MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundir Structured version   Visualization version   GIF version

Theorem coundir 6279
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundir ((𝐴𝐵) ∘ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem coundir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 5248 . . 3 ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}) = {⟨𝑥, 𝑧⟩ ∣ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧))}
2 brun 5217 . . . . . . . 8 (𝑦(𝐴𝐵)𝑧 ↔ (𝑦𝐴𝑧𝑦𝐵𝑧))
32anbi2i 622 . . . . . . 7 ((𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ (𝑥𝐶𝑦 ∧ (𝑦𝐴𝑧𝑦𝐵𝑧)))
4 andi 1008 . . . . . . 7 ((𝑥𝐶𝑦 ∧ (𝑦𝐴𝑧𝑦𝐵𝑧)) ↔ ((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
53, 4bitri 275 . . . . . 6 ((𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ ((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
65exbii 1846 . . . . 5 (∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ ∃𝑦((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
7 19.43 1881 . . . . 5 (∃𝑦((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)) ↔ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
86, 7bitr2i 276 . . . 4 ((∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)) ↔ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧))
98opabbii 5233 . . 3 {⟨𝑥, 𝑧⟩ ∣ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧))} = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
101, 9eqtri 2768 . 2 ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
11 df-co 5709 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
12 df-co 5709 . . 3 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
1311, 12uneq12i 4189 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
14 df-co 5709 . 2 ((𝐴𝐵) ∘ 𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
1510, 13, 143eqtr4ri 2779 1 ((𝐴𝐵) ∘ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 846   = wceq 1537  wex 1777  cun 3974   class class class wbr 5166  {copab 5228  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-br 5167  df-opab 5229  df-co 5709
This theorem is referenced by:  coprprop  32711  cycpmconjv  33135  diophrw  42715  diophren  42769  rtrclex  43579  trclubgNEW  43580  trclexi  43582  rtrclexi  43583  cnvtrcl0  43588  trrelsuperrel2dg  43633
  Copyright terms: Public domain W3C validator