![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version |
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
relco | ⊢ Rel (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5697 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
2 | 1 | relopabiv 5832 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1775 class class class wbr 5147 ∘ ccom 5692 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 df-co 5697 |
This theorem is referenced by: cotrg 6129 cotrgOLD 6130 cotrgOLDOLD 6131 dfco2 6266 resco 6271 coeq0 6276 coiun 6277 cocnvcnv2 6279 cores2 6280 co02 6281 co01 6282 coi1 6283 coass 6286 cossxp 6293 dfpo2 6317 fmptco 7148 cofunexg 7971 dftpos4 8268 ttrcltr 9753 ttrclco 9755 wunco 10770 relexprelg 15073 relexpaddg 15088 imasless 17586 znleval 21590 metustexhalf 24584 fcoinver 32623 fmptcof2 32673 cnvco1 35738 cnvco2 35739 opelco3 35755 txpss3v 35859 sscoid 35894 xrnss3v 38353 cononrel1 43583 cononrel2 43584 coiun1 43641 relexpaddss 43707 brco2f1o 44021 brco3f1o 44022 neicvgnvor 44105 sblpnf 44305 |
Copyright terms: Public domain | W3C validator |