| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5663 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabiv 5799 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5119 ∘ ccom 5658 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 df-co 5663 |
| This theorem is referenced by: cotrg 6096 cotrgOLD 6097 cotrgOLDOLD 6098 dfco2 6234 resco 6239 coeq0 6244 coiun 6245 cocnvcnv2 6247 cores2 6248 co02 6249 co01 6250 coi1 6251 coass 6254 cossxp 6261 dfpo2 6285 fmptco 7119 cofunexg 7947 dftpos4 8244 ttrcltr 9730 ttrclco 9732 wunco 10747 relexprelg 15057 relexpaddg 15072 imasless 17554 znleval 21515 metustexhalf 24495 fcoinver 32585 fmptcof2 32635 cnvco1 35776 cnvco2 35777 opelco3 35792 txpss3v 35896 sscoid 35931 xrnss3v 38390 cononrel1 43618 cononrel2 43619 coiun1 43676 relexpaddss 43742 brco2f1o 44056 brco3f1o 44057 neicvgnvor 44140 sblpnf 44334 coxp 48811 |
| Copyright terms: Public domain | W3C validator |