Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version |
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
relco | ⊢ Rel (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5598 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1782 class class class wbr 5074 ∘ ccom 5593 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-co 5598 |
This theorem is referenced by: dfco2 6149 resco 6154 coeq0 6159 coiun 6160 cocnvcnv2 6162 cores2 6163 co02 6164 co01 6165 coi1 6166 coass 6169 cossxp 6175 dfpo2 6199 dffun2 6443 fmptco 7001 cofunexg 7791 dftpos4 8061 ttrcltr 9474 ttrclco 9476 wunco 10489 relexprelg 14749 relexpaddg 14764 imasless 17251 znleval 20762 metustexhalf 23712 fcoinver 30946 fmptcof2 30994 cnvco1 33726 cnvco2 33727 opelco3 33749 txpss3v 34180 sscoid 34215 xrnss3v 36502 cononrel1 41202 cononrel2 41203 coiun1 41260 relexpaddss 41326 brco2f1o 41642 brco3f1o 41643 neicvgnvor 41726 sblpnf 41928 |
Copyright terms: Public domain | W3C validator |