| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5647 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5107 ∘ ccom 5642 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-co 5647 |
| This theorem is referenced by: cotrg 6080 cotrgOLD 6081 cotrgOLDOLD 6082 dfco2 6218 resco 6223 coeq0 6228 coiun 6229 cocnvcnv2 6231 cores2 6232 co02 6233 co01 6234 coi1 6235 coass 6238 cossxp 6245 dfpo2 6269 fmptco 7101 cofunexg 7927 dftpos4 8224 ttrcltr 9669 ttrclco 9671 wunco 10686 relexprelg 15004 relexpaddg 15019 imasless 17503 znleval 21464 metustexhalf 24444 fcoinver 32533 fmptcof2 32581 cnvco1 35746 cnvco2 35747 opelco3 35762 txpss3v 35866 sscoid 35901 xrnss3v 38354 cononrel1 43583 cononrel2 43584 coiun1 43641 relexpaddss 43707 brco2f1o 44021 brco3f1o 44022 neicvgnvor 44105 sblpnf 44299 coxp 48821 xpco2 48845 |
| Copyright terms: Public domain | W3C validator |