| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5623 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 class class class wbr 5089 ∘ ccom 5618 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-co 5623 |
| This theorem is referenced by: cotrg 6057 dfco2 6192 resco 6197 coeq0 6203 coiun 6204 cocnvcnv2 6206 cores2 6207 co02 6208 co01 6209 coi1 6210 coass 6213 cossxp 6219 dfpo2 6243 fmptco 7062 cofunexg 7881 dftpos4 8175 ttrcltr 9606 ttrclco 9608 wunco 10624 relexprelg 14945 relexpaddg 14960 imasless 17444 znleval 21491 metustexhalf 24471 fcoinver 32584 fmptcof2 32639 cnvco1 35803 cnvco2 35804 opelco3 35819 txpss3v 35920 sscoid 35955 xrnss3v 38415 cononrel1 43697 cononrel2 43698 coiun1 43755 relexpaddss 43821 brco2f1o 44135 brco3f1o 44136 neicvgnvor 44219 sblpnf 44413 coxp 48943 xpco2 48967 |
| Copyright terms: Public domain | W3C validator |