![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version |
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
relco | ⊢ Rel (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5709 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 class class class wbr 5166 ∘ ccom 5704 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-co 5709 |
This theorem is referenced by: cotrg 6139 cotrgOLD 6140 cotrgOLDOLD 6141 dfco2 6276 resco 6281 coeq0 6286 coiun 6287 cocnvcnv2 6289 cores2 6290 co02 6291 co01 6292 coi1 6293 coass 6296 cossxp 6303 dfpo2 6327 fmptco 7163 cofunexg 7989 dftpos4 8286 ttrcltr 9785 ttrclco 9787 wunco 10802 relexprelg 15087 relexpaddg 15102 imasless 17600 znleval 21596 metustexhalf 24590 fcoinver 32626 fmptcof2 32675 cnvco1 35721 cnvco2 35722 opelco3 35738 txpss3v 35842 sscoid 35877 xrnss3v 38328 cononrel1 43556 cononrel2 43557 coiun1 43614 relexpaddss 43680 brco2f1o 43994 brco3f1o 43995 neicvgnvor 44078 sblpnf 44279 |
Copyright terms: Public domain | W3C validator |