| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5640 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5102 ∘ ccom 5635 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-co 5640 |
| This theorem is referenced by: cotrg 6069 cotrgOLD 6070 dfco2 6206 resco 6211 coeq0 6216 coiun 6217 cocnvcnv2 6219 cores2 6220 co02 6221 co01 6222 coi1 6223 coass 6226 cossxp 6233 dfpo2 6257 fmptco 7083 cofunexg 7907 dftpos4 8201 ttrcltr 9645 ttrclco 9647 wunco 10662 relexprelg 14980 relexpaddg 14995 imasless 17479 znleval 21496 metustexhalf 24477 fcoinver 32583 fmptcof2 32631 cnvco1 35739 cnvco2 35740 opelco3 35755 txpss3v 35859 sscoid 35894 xrnss3v 38347 cononrel1 43576 cononrel2 43577 coiun1 43634 relexpaddss 43700 brco2f1o 44014 brco3f1o 44015 neicvgnvor 44098 sblpnf 44292 coxp 48814 xpco2 48838 |
| Copyright terms: Public domain | W3C validator |