| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5650 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5110 ∘ ccom 5645 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-co 5650 |
| This theorem is referenced by: cotrg 6083 cotrgOLD 6084 cotrgOLDOLD 6085 dfco2 6221 resco 6226 coeq0 6231 coiun 6232 cocnvcnv2 6234 cores2 6235 co02 6236 co01 6237 coi1 6238 coass 6241 cossxp 6248 dfpo2 6272 fmptco 7104 cofunexg 7930 dftpos4 8227 ttrcltr 9676 ttrclco 9678 wunco 10693 relexprelg 15011 relexpaddg 15026 imasless 17510 znleval 21471 metustexhalf 24451 fcoinver 32540 fmptcof2 32588 cnvco1 35753 cnvco2 35754 opelco3 35769 txpss3v 35873 sscoid 35908 xrnss3v 38361 cononrel1 43590 cononrel2 43591 coiun1 43648 relexpaddss 43714 brco2f1o 44028 brco3f1o 44029 neicvgnvor 44112 sblpnf 44306 coxp 48825 xpco2 48849 |
| Copyright terms: Public domain | W3C validator |