Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version |
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
relco | ⊢ Rel (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5536 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
2 | 1 | relopabiv 5666 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∃wex 1781 class class class wbr 5035 ∘ ccom 5531 Rel wrel 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-opab 5098 df-xp 5533 df-rel 5534 df-co 5536 |
This theorem is referenced by: dfco2 6079 resco 6084 coeq0 6089 coiun 6090 cocnvcnv2 6092 cores2 6093 co02 6094 co01 6095 coi1 6096 coass 6099 cossxp 6105 fmptco 6887 cofunexg 7659 dftpos4 7926 wunco 10198 relexprelg 14450 relexpaddg 14465 imasless 16876 znleval 20327 metustexhalf 23263 fcoinver 30473 fmptcof2 30522 dfpo2 33242 cnvco1 33246 cnvco2 33247 opelco3 33269 txpss3v 33755 sscoid 33790 xrnss3v 36090 cononrel1 40695 cononrel2 40696 coiun1 40754 relexpaddss 40820 brco2f1o 41136 brco3f1o 41137 neicvgnvor 41220 sblpnf 41415 |
Copyright terms: Public domain | W3C validator |