Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version |
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
relco | ⊢ Rel (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5589 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 class class class wbr 5070 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-co 5589 |
This theorem is referenced by: dfco2 6138 resco 6143 coeq0 6148 coiun 6149 cocnvcnv2 6151 cores2 6152 co02 6153 co01 6154 coi1 6155 coass 6158 cossxp 6164 dfpo2 6188 fmptco 6983 cofunexg 7765 dftpos4 8032 wunco 10420 relexprelg 14677 relexpaddg 14692 imasless 17168 znleval 20674 metustexhalf 23618 fcoinver 30847 fmptcof2 30896 cnvco1 33632 cnvco2 33633 opelco3 33655 ttrcltr 33702 ttrclco 33704 txpss3v 34107 sscoid 34142 xrnss3v 36429 cononrel1 41091 cononrel2 41092 coiun1 41149 relexpaddss 41215 brco2f1o 41531 brco3f1o 41532 neicvgnvor 41615 sblpnf 41817 |
Copyright terms: Public domain | W3C validator |