| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5628 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabiv 5763 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5092 ∘ ccom 5623 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-co 5628 |
| This theorem is referenced by: cotrg 6060 dfco2 6194 resco 6199 coeq0 6204 coiun 6205 cocnvcnv2 6207 cores2 6208 co02 6209 co01 6210 coi1 6211 coass 6214 cossxp 6220 dfpo2 6244 fmptco 7063 cofunexg 7884 dftpos4 8178 ttrcltr 9612 ttrclco 9614 wunco 10627 relexprelg 14945 relexpaddg 14960 imasless 17444 znleval 21461 metustexhalf 24442 fcoinver 32548 fmptcof2 32600 cnvco1 35736 cnvco2 35737 opelco3 35752 txpss3v 35856 sscoid 35891 xrnss3v 38344 cononrel1 43571 cononrel2 43572 coiun1 43629 relexpaddss 43695 brco2f1o 44009 brco3f1o 44010 neicvgnvor 44093 sblpnf 44287 coxp 48821 xpco2 48845 |
| Copyright terms: Public domain | W3C validator |