Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cores | Structured version Visualization version GIF version |
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cores | ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
2 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brelrn 5851 | . . . . . 6 ⊢ (𝑧𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
4 | ssel 3914 | . . . . . 6 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶)) | |
5 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | 5 | brresi 5900 | . . . . . . 7 ⊢ (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦𝐴𝑥)) |
7 | 6 | baib 536 | . . . . . 6 ⊢ (𝑦 ∈ 𝐶 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥)) |
8 | 3, 4, 7 | syl56 36 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥))) |
9 | 8 | pm5.32d 577 | . . . 4 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
10 | 9 | exbidv 1924 | . . 3 ⊢ (ran 𝐵 ⊆ 𝐶 → (∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
11 | 10 | opabbidv 5140 | . 2 ⊢ (ran 𝐵 ⊆ 𝐶 → {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)}) |
12 | df-co 5598 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} | |
13 | df-co 5598 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)} | |
14 | 11, 12, 13 | 3eqtr4g 2803 | 1 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 {copab 5136 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 |
This theorem is referenced by: cocnvcnv1 6161 cores2 6163 relcoi2 6180 funresfunco 6475 fco2 6627 fcoi2 6649 domss2 8923 cottrcl 9477 canthp1lem2 10409 imasdsval2 17227 frmdss2 18502 gsumval3lem1 19506 gsumzres 19510 gsumzaddlem 19522 dprdf1 19636 kgencn2 22708 tsmsf1o 23296 lgamcvg2 26204 hhssims 29636 symgcom 31352 cycpmconjslem1 31421 cycpmconjslem2 31422 eulerpartgbij 32339 cvmlift2lem9a 33265 poimirlem9 35786 fourierdlem53 43700 |
Copyright terms: Public domain | W3C validator |