Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cores | Structured version Visualization version GIF version |
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cores | ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3434 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
2 | vex 3434 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brelrn 5845 | . . . . . 6 ⊢ (𝑧𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
4 | ssel 3914 | . . . . . 6 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶)) | |
5 | vex 3434 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | 5 | brresi 5894 | . . . . . . 7 ⊢ (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦𝐴𝑥)) |
7 | 6 | baib 536 | . . . . . 6 ⊢ (𝑦 ∈ 𝐶 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥)) |
8 | 3, 4, 7 | syl56 36 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥))) |
9 | 8 | pm5.32d 577 | . . . 4 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
10 | 9 | exbidv 1924 | . . 3 ⊢ (ran 𝐵 ⊆ 𝐶 → (∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
11 | 10 | opabbidv 5140 | . 2 ⊢ (ran 𝐵 ⊆ 𝐶 → {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)}) |
12 | df-co 5594 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} | |
13 | df-co 5594 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)} | |
14 | 11, 12, 13 | 3eqtr4g 2803 | 1 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 {copab 5136 ran crn 5586 ↾ cres 5587 ∘ ccom 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5075 df-opab 5137 df-xp 5591 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 |
This theorem is referenced by: cocnvcnv1 6155 cores2 6157 relcoi2 6174 funresfunco 6468 fco2 6620 fcoi2 6642 domss2 8911 cottrcl 9465 canthp1lem2 10397 imasdsval2 17215 frmdss2 18490 gsumval3lem1 19494 gsumzres 19498 gsumzaddlem 19510 dprdf1 19624 kgencn2 22696 tsmsf1o 23284 lgamcvg2 26192 hhssims 29622 symgcom 31338 cycpmconjslem1 31407 cycpmconjslem2 31408 eulerpartgbij 32325 cvmlift2lem9a 33251 poimirlem9 35772 fourierdlem53 43659 |
Copyright terms: Public domain | W3C validator |