MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores Structured version   Visualization version   GIF version

Theorem cores 6222
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))

Proof of Theorem cores
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . . . 7 𝑧 ∈ V
2 vex 3451 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5906 . . . . . 6 (𝑧𝐵𝑦𝑦 ∈ ran 𝐵)
4 ssel 3940 . . . . . 6 (ran 𝐵𝐶 → (𝑦 ∈ ran 𝐵𝑦𝐶))
5 vex 3451 . . . . . . . 8 𝑥 ∈ V
65brresi 5959 . . . . . . 7 (𝑦(𝐴𝐶)𝑥 ↔ (𝑦𝐶𝑦𝐴𝑥))
76baib 535 . . . . . 6 (𝑦𝐶 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥))
83, 4, 7syl56 36 . . . . 5 (ran 𝐵𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥)))
98pm5.32d 577 . . . 4 (ran 𝐵𝐶 → ((𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ (𝑧𝐵𝑦𝑦𝐴𝑥)))
109exbidv 1921 . . 3 (ran 𝐵𝐶 → (∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)))
1110opabbidv 5173 . 2 (ran 𝐵𝐶 → {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)} = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)})
12 df-co 5647 . 2 ((𝐴𝐶) ∘ 𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)}
13 df-co 5647 . 2 (𝐴𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)}
1411, 12, 133eqtr4g 2789 1 (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wss 3914   class class class wbr 5107  {copab 5169  ran crn 5639  cres 5640  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  cocnvcnv1  6230  cores2  6232  relcoi2  6250  funresfunco  6557  fco2  6714  fcoi2  6735  f1ocoima  7278  domss2  9100  cottrcl  9672  canthp1lem2  10606  imasdsval2  17479  frmdss2  18790  gsumval3lem1  19835  gsumzres  19839  gsumzaddlem  19851  dprdf1  19965  kgencn2  23444  tsmsf1o  24032  lgamcvg2  26965  hhssims  31203  ccatws1f1olast  32874  symgcom  33040  cycpmconjslem1  33111  cycpmconjslem2  33112  eulerpartgbij  34363  cvmlift2lem9a  35290  poimirlem9  37623  fourierdlem53  46157  tposres3  48869
  Copyright terms: Public domain W3C validator