| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cores | Structured version Visualization version GIF version | ||
| Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cores | ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 2 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | brelrn 5906 | . . . . . 6 ⊢ (𝑧𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
| 4 | ssel 3940 | . . . . . 6 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶)) | |
| 5 | vex 3451 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | 5 | brresi 5959 | . . . . . . 7 ⊢ (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦𝐴𝑥)) |
| 7 | 6 | baib 535 | . . . . . 6 ⊢ (𝑦 ∈ 𝐶 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥)) |
| 8 | 3, 4, 7 | syl56 36 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥))) |
| 9 | 8 | pm5.32d 577 | . . . 4 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
| 10 | 9 | exbidv 1921 | . . 3 ⊢ (ran 𝐵 ⊆ 𝐶 → (∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
| 11 | 10 | opabbidv 5173 | . 2 ⊢ (ran 𝐵 ⊆ 𝐶 → {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)}) |
| 12 | df-co 5647 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} | |
| 13 | df-co 5647 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4g 2789 | 1 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 {copab 5169 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: cocnvcnv1 6230 cores2 6232 relcoi2 6250 funresfunco 6557 fco2 6714 fcoi2 6735 f1ocoima 7278 domss2 9100 cottrcl 9672 canthp1lem2 10606 imasdsval2 17479 frmdss2 18790 gsumval3lem1 19835 gsumzres 19839 gsumzaddlem 19851 dprdf1 19965 kgencn2 23444 tsmsf1o 24032 lgamcvg2 26965 hhssims 31203 ccatws1f1olast 32874 symgcom 33040 cycpmconjslem1 33111 cycpmconjslem2 33112 eulerpartgbij 34363 cvmlift2lem9a 35290 poimirlem9 37623 fourierdlem53 46157 tposres3 48869 |
| Copyright terms: Public domain | W3C validator |