Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores Structured version   Visualization version   GIF version

Theorem cores 6075
 Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))

Proof of Theorem cores
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3474 . . . . . . 7 𝑧 ∈ V
2 vex 3474 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5785 . . . . . 6 (𝑧𝐵𝑦𝑦 ∈ ran 𝐵)
4 ssel 3937 . . . . . 6 (ran 𝐵𝐶 → (𝑦 ∈ ran 𝐵𝑦𝐶))
5 vex 3474 . . . . . . . 8 𝑥 ∈ V
65brresi 5835 . . . . . . 7 (𝑦(𝐴𝐶)𝑥 ↔ (𝑦𝐶𝑦𝐴𝑥))
76baib 539 . . . . . 6 (𝑦𝐶 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥))
83, 4, 7syl56 36 . . . . 5 (ran 𝐵𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥)))
98pm5.32d 580 . . . 4 (ran 𝐵𝐶 → ((𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ (𝑧𝐵𝑦𝑦𝐴𝑥)))
109exbidv 1923 . . 3 (ran 𝐵𝐶 → (∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)))
1110opabbidv 5105 . 2 (ran 𝐵𝐶 → {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)} = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)})
12 df-co 5537 . 2 ((𝐴𝐶) ∘ 𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)}
13 df-co 5537 . 2 (𝐴𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)}
1411, 12, 133eqtr4g 2881 1 (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115   ⊆ wss 3910   class class class wbr 5039  {copab 5101  ran crn 5529   ↾ cres 5530   ∘ ccom 5532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040  df-opab 5102  df-xp 5534  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540 This theorem is referenced by:  cocnvcnv1  6083  cores2  6085  relcoi2  6101  funresfunco  6369  fco2  6506  fcoi2  6526  domss2  8652  canthp1lem2  10052  imasdsval2  16768  frmdss2  18007  gsumval3lem1  19004  gsumzres  19008  gsumzaddlem  19020  dprdf1  19134  kgencn2  22141  tsmsf1o  22729  lgamcvg2  25619  hhssims  29036  symgcom  30735  cycpmconjslem1  30804  cycpmconjslem2  30805  eulerpartgbij  31638  cvmlift2lem9a  32558  poimirlem9  34948  fourierdlem53  42620
 Copyright terms: Public domain W3C validator