MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores Structured version   Visualization version   GIF version

Theorem cores 6102
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))

Proof of Theorem cores
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3497 . . . . . . 7 𝑧 ∈ V
2 vex 3497 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5812 . . . . . 6 (𝑧𝐵𝑦𝑦 ∈ ran 𝐵)
4 ssel 3961 . . . . . 6 (ran 𝐵𝐶 → (𝑦 ∈ ran 𝐵𝑦𝐶))
5 vex 3497 . . . . . . . 8 𝑥 ∈ V
65brresi 5862 . . . . . . 7 (𝑦(𝐴𝐶)𝑥 ↔ (𝑦𝐶𝑦𝐴𝑥))
76baib 538 . . . . . 6 (𝑦𝐶 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥))
83, 4, 7syl56 36 . . . . 5 (ran 𝐵𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥)))
98pm5.32d 579 . . . 4 (ran 𝐵𝐶 → ((𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ (𝑧𝐵𝑦𝑦𝐴𝑥)))
109exbidv 1922 . . 3 (ran 𝐵𝐶 → (∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)))
1110opabbidv 5132 . 2 (ran 𝐵𝐶 → {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)} = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)})
12 df-co 5564 . 2 ((𝐴𝐶) ∘ 𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)}
13 df-co 5564 . 2 (𝐴𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)}
1411, 12, 133eqtr4g 2881 1 (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wss 3936   class class class wbr 5066  {copab 5128  ran crn 5556  cres 5557  ccom 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567
This theorem is referenced by:  cocnvcnv1  6110  cores2  6112  relcoi2  6128  funresfunco  6396  fco2  6533  fcoi2  6553  domss2  8676  canthp1lem2  10075  imasdsval2  16789  frmdss2  18028  gsumval3lem1  19025  gsumzres  19029  gsumzaddlem  19041  dprdf1  19155  kgencn2  22165  tsmsf1o  22753  lgamcvg2  25632  hhssims  29051  symgcom  30727  cycpmconjslem1  30796  cycpmconjslem2  30797  eulerpartgbij  31630  cvmlift2lem9a  32550  poimirlem9  34916  fourierdlem53  42464
  Copyright terms: Public domain W3C validator