| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cores | Structured version Visualization version GIF version | ||
| Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cores | ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 2 | vex 3438 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | brelrn 5879 | . . . . . 6 ⊢ (𝑧𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
| 4 | ssel 3926 | . . . . . 6 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶)) | |
| 5 | vex 3438 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | 5 | brresi 5934 | . . . . . . 7 ⊢ (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦𝐴𝑥)) |
| 7 | 6 | baib 535 | . . . . . 6 ⊢ (𝑦 ∈ 𝐶 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥)) |
| 8 | 3, 4, 7 | syl56 36 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥))) |
| 9 | 8 | pm5.32d 577 | . . . 4 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
| 10 | 9 | exbidv 1922 | . . 3 ⊢ (ran 𝐵 ⊆ 𝐶 → (∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
| 11 | 10 | opabbidv 5155 | . 2 ⊢ (ran 𝐵 ⊆ 𝐶 → {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)}) |
| 12 | df-co 5623 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} | |
| 13 | df-co 5623 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4g 2790 | 1 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ⊆ wss 3900 class class class wbr 5089 {copab 5151 ran crn 5615 ↾ cres 5616 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 |
| This theorem is referenced by: cocnvcnv1 6201 cores2 6203 relcoi2 6220 funresfunco 6518 fco2 6673 fcoi2 6694 f1ocoima 7232 domss2 9044 cottrcl 9604 canthp1lem2 10536 imasdsval2 17412 frmdss2 18763 gsumval3lem1 19810 gsumzres 19814 gsumzaddlem 19826 dprdf1 19940 kgencn2 23465 tsmsf1o 24053 lgamcvg2 26985 hhssims 31244 ccatws1f1olast 32923 symgcom 33042 cycpmconjslem1 33113 cycpmconjslem2 33114 eulerpartgbij 34375 cvmlift2lem9a 35315 poimirlem9 37648 fourierdlem53 46176 tposres3 48891 |
| Copyright terms: Public domain | W3C validator |