MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores Structured version   Visualization version   GIF version

Theorem cores 6280
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))

Proof of Theorem cores
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . 7 𝑧 ∈ V
2 vex 3492 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5967 . . . . . 6 (𝑧𝐵𝑦𝑦 ∈ ran 𝐵)
4 ssel 4002 . . . . . 6 (ran 𝐵𝐶 → (𝑦 ∈ ran 𝐵𝑦𝐶))
5 vex 3492 . . . . . . . 8 𝑥 ∈ V
65brresi 6018 . . . . . . 7 (𝑦(𝐴𝐶)𝑥 ↔ (𝑦𝐶𝑦𝐴𝑥))
76baib 535 . . . . . 6 (𝑦𝐶 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥))
83, 4, 7syl56 36 . . . . 5 (ran 𝐵𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥)))
98pm5.32d 576 . . . 4 (ran 𝐵𝐶 → ((𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ (𝑧𝐵𝑦𝑦𝐴𝑥)))
109exbidv 1920 . . 3 (ran 𝐵𝐶 → (∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)))
1110opabbidv 5232 . 2 (ran 𝐵𝐶 → {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)} = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)})
12 df-co 5709 . 2 ((𝐴𝐶) ∘ 𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)}
13 df-co 5709 . 2 (𝐴𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)}
1411, 12, 133eqtr4g 2805 1 (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wss 3976   class class class wbr 5166  {copab 5228  ran crn 5701  cres 5702  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  cocnvcnv1  6288  cores2  6290  relcoi2  6308  funresfunco  6619  fco2  6774  fcoi2  6796  f1ocoima  7339  domss2  9202  cottrcl  9788  canthp1lem2  10722  imasdsval2  17576  frmdss2  18898  gsumval3lem1  19947  gsumzres  19951  gsumzaddlem  19963  dprdf1  20077  kgencn2  23586  tsmsf1o  24174  lgamcvg2  27116  hhssims  31306  ccatws1f1olast  32919  symgcom  33076  cycpmconjslem1  33147  cycpmconjslem2  33148  eulerpartgbij  34337  cvmlift2lem9a  35271  poimirlem9  37589  fourierdlem53  46080
  Copyright terms: Public domain W3C validator