| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cores | Structured version Visualization version GIF version | ||
| Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cores | ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 2 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | brelrn 5927 | . . . . . 6 ⊢ (𝑧𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
| 4 | ssel 3957 | . . . . . 6 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶)) | |
| 5 | vex 3468 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | 5 | brresi 5980 | . . . . . . 7 ⊢ (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦𝐴𝑥)) |
| 7 | 6 | baib 535 | . . . . . 6 ⊢ (𝑦 ∈ 𝐶 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥)) |
| 8 | 3, 4, 7 | syl56 36 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴 ↾ 𝐶)𝑥 ↔ 𝑦𝐴𝑥))) |
| 9 | 8 | pm5.32d 577 | . . . 4 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
| 10 | 9 | exbidv 1921 | . . 3 ⊢ (ran 𝐵 ⊆ 𝐶 → (∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥))) |
| 11 | 10 | opabbidv 5190 | . 2 ⊢ (ran 𝐵 ⊆ 𝐶 → {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)}) |
| 12 | df-co 5668 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦(𝐴 ↾ 𝐶)𝑥)} | |
| 13 | df-co 5668 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑧, 𝑥〉 ∣ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4g 2796 | 1 ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 {copab 5186 ran crn 5660 ↾ cres 5661 ∘ ccom 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 |
| This theorem is referenced by: cocnvcnv1 6251 cores2 6253 relcoi2 6271 funresfunco 6582 fco2 6737 fcoi2 6758 f1ocoima 7301 domss2 9155 cottrcl 9738 canthp1lem2 10672 imasdsval2 17535 frmdss2 18846 gsumval3lem1 19891 gsumzres 19895 gsumzaddlem 19907 dprdf1 20021 kgencn2 23500 tsmsf1o 24088 lgamcvg2 27022 hhssims 31260 ccatws1f1olast 32933 symgcom 33099 cycpmconjslem1 33170 cycpmconjslem2 33171 eulerpartgbij 34409 cvmlift2lem9a 35330 poimirlem9 37658 fourierdlem53 46155 tposres3 48823 |
| Copyright terms: Public domain | W3C validator |