| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coundi | Structured version Visualization version GIF version | ||
| Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| coundi | ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopab 5200 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} | |
| 2 | brun 5170 | . . . . . . . 8 ⊢ (𝑥(𝐵 ∪ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧)) | |
| 3 | 2 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦)) |
| 4 | andir 1010 | . . . . . . 7 ⊢ (((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
| 5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
| 7 | 19.43 1882 | . . . . 5 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
| 8 | 6, 7 | bitr2i 276 | . . . 4 ⊢ ((∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 8 | opabbii 5186 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
| 10 | 1, 9 | eqtri 2758 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
| 11 | df-co 5663 | . . 3 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 12 | df-co 5663 | . . 3 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)} | |
| 13 | 11, 12 | uneq12i 4141 | . 2 ⊢ ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) = ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) |
| 14 | df-co 5663 | . 2 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} | |
| 15 | 10, 13, 14 | 3eqtr4ri 2769 | 1 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∪ cun 3924 class class class wbr 5119 {copab 5181 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-br 5120 df-opab 5182 df-co 5663 |
| This theorem is referenced by: f1ofvswap 7299 mvdco 19426 ustssco 24153 coprprop 32676 cycpmconjv 33153 cvmliftlem10 35316 poimirlem9 37653 diophren 42836 rtrclex 43641 trclubgNEW 43642 trclexi 43644 rtrclexi 43645 cnvtrcl0 43650 trrelsuperrel2dg 43695 cotrclrcl 43766 frege131d 43788 dftpos6 48850 |
| Copyright terms: Public domain | W3C validator |