Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coundi | Structured version Visualization version GIF version |
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
coundi | ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopab 5163 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} | |
2 | brun 5132 | . . . . . . . 8 ⊢ (𝑥(𝐵 ∪ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧)) | |
3 | 2 | anbi1i 625 | . . . . . . 7 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦)) |
4 | andir 1007 | . . . . . . 7 ⊢ (((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 19.43 1883 | . . . . 5 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
8 | 6, 7 | bitr2i 276 | . . . 4 ⊢ ((∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 8 | opabbii 5148 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
10 | 1, 9 | eqtri 2764 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
11 | df-co 5609 | . . 3 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
12 | df-co 5609 | . . 3 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)} | |
13 | 11, 12 | uneq12i 4101 | . 2 ⊢ ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) = ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) |
14 | df-co 5609 | . 2 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} | |
15 | 10, 13, 14 | 3eqtr4ri 2775 | 1 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 845 = wceq 1539 ∃wex 1779 ∪ cun 3890 class class class wbr 5081 {copab 5143 ∘ ccom 5604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-br 5082 df-opab 5144 df-co 5609 |
This theorem is referenced by: f1ofvswap 7210 mvdco 19102 ustssco 23415 coprprop 31081 cycpmconjv 31458 cvmliftlem10 33305 poimirlem9 35834 diophren 40830 rtrclex 41438 trclubgNEW 41439 trclexi 41441 rtrclexi 41442 cnvtrcl0 41447 trrelsuperrel2dg 41492 cotrclrcl 41563 frege131d 41585 |
Copyright terms: Public domain | W3C validator |