| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coundi | Structured version Visualization version GIF version | ||
| Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| coundi | ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopab 5173 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} | |
| 2 | brun 5144 | . . . . . . . 8 ⊢ (𝑥(𝐵 ∪ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧)) | |
| 3 | 2 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦)) |
| 4 | andir 1010 | . . . . . . 7 ⊢ (((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
| 5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
| 6 | 5 | exbii 1849 | . . . . 5 ⊢ (∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
| 7 | 19.43 1883 | . . . . 5 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
| 8 | 6, 7 | bitr2i 276 | . . . 4 ⊢ ((∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 8 | opabbii 5160 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
| 10 | 1, 9 | eqtri 2756 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
| 11 | df-co 5628 | . . 3 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 12 | df-co 5628 | . . 3 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)} | |
| 13 | 11, 12 | uneq12i 4115 | . 2 ⊢ ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) = ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) |
| 14 | df-co 5628 | . 2 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} | |
| 15 | 10, 13, 14 | 3eqtr4ri 2767 | 1 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∪ cun 3896 class class class wbr 5093 {copab 5155 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-br 5094 df-opab 5156 df-co 5628 |
| This theorem is referenced by: f1ofvswap 7246 mvdco 19359 ustssco 24131 coprprop 32684 cycpmconjv 33118 cvmliftlem10 35359 poimirlem9 37689 diophren 42930 rtrclex 43734 trclubgNEW 43735 trclexi 43737 rtrclexi 43738 cnvtrcl0 43743 trrelsuperrel2dg 43788 cotrclrcl 43859 frege131d 43881 dftpos6 48999 |
| Copyright terms: Public domain | W3C validator |