MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundi Structured version   Visualization version   GIF version

Theorem coundi 6165
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundi (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem coundi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 5163 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))}
2 brun 5132 . . . . . . . 8 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐵𝑧𝑥𝐶𝑧))
32anbi1i 625 . . . . . . 7 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦))
4 andir 1007 . . . . . . 7 (((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
53, 4bitri 275 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
65exbii 1848 . . . . 5 (∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
7 19.43 1883 . . . . 5 (∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)))
86, 7bitr2i 276 . . . 4 ((∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
98opabbii 5148 . . 3 {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
101, 9eqtri 2764 . 2 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
11 df-co 5609 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
12 df-co 5609 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}
1311, 12uneq12i 4101 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)})
14 df-co 5609 . 2 (𝐴 ∘ (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
1510, 13, 143eqtr4ri 2775 1 (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 845   = wceq 1539  wex 1779  cun 3890   class class class wbr 5081  {copab 5143  ccom 5604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-un 3897  df-br 5082  df-opab 5144  df-co 5609
This theorem is referenced by:  f1ofvswap  7210  mvdco  19102  ustssco  23415  coprprop  31081  cycpmconjv  31458  cvmliftlem10  33305  poimirlem9  35834  diophren  40830  rtrclex  41438  trclubgNEW  41439  trclexi  41441  rtrclexi  41442  cnvtrcl0  41447  trrelsuperrel2dg  41492  cotrclrcl  41563  frege131d  41585
  Copyright terms: Public domain W3C validator