MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundi Structured version   Visualization version   GIF version

Theorem coundi 6236
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundi (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem coundi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 5200 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))}
2 brun 5170 . . . . . . . 8 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐵𝑧𝑥𝐶𝑧))
32anbi1i 624 . . . . . . 7 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦))
4 andir 1010 . . . . . . 7 (((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
53, 4bitri 275 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
65exbii 1848 . . . . 5 (∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
7 19.43 1882 . . . . 5 (∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)))
86, 7bitr2i 276 . . . 4 ((∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
98opabbii 5186 . . 3 {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
101, 9eqtri 2758 . 2 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
11 df-co 5663 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
12 df-co 5663 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}
1311, 12uneq12i 4141 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)})
14 df-co 5663 . 2 (𝐴 ∘ (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
1510, 13, 143eqtr4ri 2769 1 (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wex 1779  cun 3924   class class class wbr 5119  {copab 5181  ccom 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931  df-br 5120  df-opab 5182  df-co 5663
This theorem is referenced by:  f1ofvswap  7299  mvdco  19426  ustssco  24153  coprprop  32676  cycpmconjv  33153  cvmliftlem10  35316  poimirlem9  37653  diophren  42836  rtrclex  43641  trclubgNEW  43642  trclexi  43644  rtrclexi  43645  cnvtrcl0  43650  trrelsuperrel2dg  43695  cotrclrcl  43766  frege131d  43788  dftpos6  48850
  Copyright terms: Public domain W3C validator