| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coundi | Structured version Visualization version GIF version | ||
| Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| coundi | ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopab 5175 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} | |
| 2 | brun 5146 | . . . . . . . 8 ⊢ (𝑥(𝐵 ∪ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧)) | |
| 3 | 2 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦)) |
| 4 | andir 1010 | . . . . . . 7 ⊢ (((𝑥𝐵𝑧 ∨ 𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
| 5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ ((𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) |
| 7 | 19.43 1882 | . . . . 5 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))) | |
| 8 | 6, 7 | bitr2i 276 | . . . 4 ⊢ ((∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 8 | opabbii 5162 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
| 10 | 1, 9 | eqtri 2752 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} |
| 11 | df-co 5632 | . . 3 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 12 | df-co 5632 | . . 3 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)} | |
| 13 | 11, 12 | uneq12i 4119 | . 2 ⊢ ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) = ({〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐴𝑦)}) |
| 14 | df-co 5632 | . 2 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥(𝐵 ∪ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)} | |
| 15 | 10, 13, 14 | 3eqtr4ri 2763 | 1 ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∪ cun 3903 class class class wbr 5095 {copab 5157 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-br 5096 df-opab 5158 df-co 5632 |
| This theorem is referenced by: f1ofvswap 7247 mvdco 19342 ustssco 24118 coprprop 32655 cycpmconjv 33097 cvmliftlem10 35266 poimirlem9 37608 diophren 42786 rtrclex 43590 trclubgNEW 43591 trclexi 43593 rtrclexi 43594 cnvtrcl0 43599 trrelsuperrel2dg 43644 cotrclrcl 43715 frege131d 43737 dftpos6 48860 |
| Copyright terms: Public domain | W3C validator |