MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfco Structured version   Visualization version   GIF version

Theorem nfco 5890
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1 𝑥𝐴
nfco.2 𝑥𝐵
Assertion
Ref Expression
nfco 𝑥(𝐴𝐵)

Proof of Theorem nfco
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5709 . 2 (𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
2 nfcv 2908 . . . . . 6 𝑥𝑦
3 nfco.2 . . . . . 6 𝑥𝐵
4 nfcv 2908 . . . . . 6 𝑥𝑤
52, 3, 4nfbr 5213 . . . . 5 𝑥 𝑦𝐵𝑤
6 nfco.1 . . . . . 6 𝑥𝐴
7 nfcv 2908 . . . . . 6 𝑥𝑧
84, 6, 7nfbr 5213 . . . . 5 𝑥 𝑤𝐴𝑧
95, 8nfan 1898 . . . 4 𝑥(𝑦𝐵𝑤𝑤𝐴𝑧)
109nfex 2328 . . 3 𝑥𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)
1110nfopab 5235 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
121, 11nfcxfr 2906 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1777  wnfc 2893   class class class wbr 5166  {copab 5228  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-co 5709
This theorem is referenced by:  csbcog  6328  nffun  6601  nftpos  8302  nfwrecs  8357  cnmpt11  23692  cnmpt21  23700  poimirlem16  37596  poimirlem19  37599  choicefi  45107  cncficcgt0  45809  volioofmpt  45915  volicofmpt  45918  stoweidlem31  45952  stoweidlem59  45980
  Copyright terms: Public domain W3C validator