![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfco | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 | ⊢ Ⅎ𝑥𝐴 |
nfco.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfco | ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5709 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} | |
2 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
3 | nfco.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 5213 | . . . . 5 ⊢ Ⅎ𝑥 𝑦𝐵𝑤 |
6 | nfco.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
7 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
8 | 4, 6, 7 | nfbr 5213 | . . . . 5 ⊢ Ⅎ𝑥 𝑤𝐴𝑧 |
9 | 5, 8 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
10 | 9 | nfex 2328 | . . 3 ⊢ Ⅎ𝑥∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
11 | 10 | nfopab 5235 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} |
12 | 1, 11 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 Ⅎwnfc 2893 class class class wbr 5166 {copab 5228 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: csbcog 6328 nffun 6601 nftpos 8302 nfwrecs 8357 cnmpt11 23692 cnmpt21 23700 poimirlem16 37596 poimirlem19 37599 choicefi 45107 cncficcgt0 45809 volioofmpt 45915 volicofmpt 45918 stoweidlem31 45952 stoweidlem59 45980 |
Copyright terms: Public domain | W3C validator |