MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfco Structured version   Visualization version   GIF version

Theorem nfco 5804
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1 𝑥𝐴
nfco.2 𝑥𝐵
Assertion
Ref Expression
nfco 𝑥(𝐴𝐵)

Proof of Theorem nfco
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5623 . 2 (𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
2 nfcv 2894 . . . . . 6 𝑥𝑦
3 nfco.2 . . . . . 6 𝑥𝐵
4 nfcv 2894 . . . . . 6 𝑥𝑤
52, 3, 4nfbr 5136 . . . . 5 𝑥 𝑦𝐵𝑤
6 nfco.1 . . . . . 6 𝑥𝐴
7 nfcv 2894 . . . . . 6 𝑥𝑧
84, 6, 7nfbr 5136 . . . . 5 𝑥 𝑤𝐴𝑧
95, 8nfan 1900 . . . 4 𝑥(𝑦𝐵𝑤𝑤𝐴𝑧)
109nfex 2325 . . 3 𝑥𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)
1110nfopab 5158 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
121, 11nfcxfr 2892 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1780  wnfc 2879   class class class wbr 5089  {copab 5151  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-co 5623
This theorem is referenced by:  csbcog  6244  nffun  6504  nftpos  8191  nfwrecs  8244  cnmpt11  23578  cnmpt21  23586  poimirlem16  37686  poimirlem19  37689  choicefi  45307  cncficcgt0  45996  volioofmpt  46102  volicofmpt  46105  stoweidlem31  46139  stoweidlem59  46167
  Copyright terms: Public domain W3C validator