| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfco | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| nfco.1 | ⊢ Ⅎ𝑥𝐴 |
| nfco.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfco | ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 5623 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} | |
| 2 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfco.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑤 | |
| 5 | 2, 3, 4 | nfbr 5136 | . . . . 5 ⊢ Ⅎ𝑥 𝑦𝐵𝑤 |
| 6 | nfco.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 7 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 8 | 4, 6, 7 | nfbr 5136 | . . . . 5 ⊢ Ⅎ𝑥 𝑤𝐴𝑧 |
| 9 | 5, 8 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
| 10 | 9 | nfex 2325 | . . 3 ⊢ Ⅎ𝑥∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
| 11 | 10 | nfopab 5158 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} |
| 12 | 1, 11 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 Ⅎwnfc 2879 class class class wbr 5089 {copab 5151 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: csbcog 6244 nffun 6504 nftpos 8191 nfwrecs 8244 cnmpt11 23578 cnmpt21 23586 poimirlem16 37686 poimirlem19 37689 choicefi 45307 cncficcgt0 45996 volioofmpt 46102 volicofmpt 46105 stoweidlem31 46139 stoweidlem59 46167 |
| Copyright terms: Public domain | W3C validator |