MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfco Structured version   Visualization version   GIF version

Theorem nfco 5706
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1 𝑥𝐴
nfco.2 𝑥𝐵
Assertion
Ref Expression
nfco 𝑥(𝐴𝐵)

Proof of Theorem nfco
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5534 . 2 (𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
2 nfcv 2920 . . . . . 6 𝑥𝑦
3 nfco.2 . . . . . 6 𝑥𝐵
4 nfcv 2920 . . . . . 6 𝑥𝑤
52, 3, 4nfbr 5080 . . . . 5 𝑥 𝑦𝐵𝑤
6 nfco.1 . . . . . 6 𝑥𝐴
7 nfcv 2920 . . . . . 6 𝑥𝑧
84, 6, 7nfbr 5080 . . . . 5 𝑥 𝑤𝐴𝑧
95, 8nfan 1901 . . . 4 𝑥(𝑦𝐵𝑤𝑤𝐴𝑧)
109nfex 2333 . . 3 𝑥𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)
1110nfopab 5101 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
121, 11nfcxfr 2918 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 400  wex 1782  wnfc 2900   class class class wbr 5033  {copab 5095  ccom 5529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-v 3412  df-dif 3862  df-un 3864  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-br 5034  df-opab 5096  df-co 5534
This theorem is referenced by:  nffun  6359  nftpos  7938  cnmpt11  22356  cnmpt21  22364  poimirlem16  35346  poimirlem19  35349  csbcog  40716  choicefi  42192  cncficcgt0  42889  volioofmpt  42995  volicofmpt  42998  stoweidlem31  43032  stoweidlem59  43060
  Copyright terms: Public domain W3C validator