![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfco | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 | ⊢ Ⅎ𝑥𝐴 |
nfco.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfco | ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5459 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} | |
2 | nfcv 2951 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
3 | nfco.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2951 | . . . . . 6 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 5015 | . . . . 5 ⊢ Ⅎ𝑥 𝑦𝐵𝑤 |
6 | nfco.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
7 | nfcv 2951 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
8 | 4, 6, 7 | nfbr 5015 | . . . . 5 ⊢ Ⅎ𝑥 𝑤𝐴𝑧 |
9 | 5, 8 | nfan 1885 | . . . 4 ⊢ Ⅎ𝑥(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
10 | 9 | nfex 2308 | . . 3 ⊢ Ⅎ𝑥∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
11 | 10 | nfopab 5036 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} |
12 | 1, 11 | nfcxfr 2949 | 1 ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1765 Ⅎwnfc 2935 class class class wbr 4968 {copab 5030 ∘ ccom 5454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-co 5459 |
This theorem is referenced by: nffun 6255 nftpos 7785 cnmpt11 21959 cnmpt21 21967 poimirlem16 34460 poimirlem19 34463 csbcog 39500 choicefi 41024 cncficcgt0 41734 volioofmpt 41843 volicofmpt 41846 stoweidlem31 41880 stoweidlem59 41908 |
Copyright terms: Public domain | W3C validator |