MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfco Structured version   Visualization version   GIF version

Theorem nfco 5829
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1 𝑥𝐴
nfco.2 𝑥𝐵
Assertion
Ref Expression
nfco 𝑥(𝐴𝐵)

Proof of Theorem nfco
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5647 . 2 (𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
2 nfcv 2891 . . . . . 6 𝑥𝑦
3 nfco.2 . . . . . 6 𝑥𝐵
4 nfcv 2891 . . . . . 6 𝑥𝑤
52, 3, 4nfbr 5154 . . . . 5 𝑥 𝑦𝐵𝑤
6 nfco.1 . . . . . 6 𝑥𝐴
7 nfcv 2891 . . . . . 6 𝑥𝑧
84, 6, 7nfbr 5154 . . . . 5 𝑥 𝑤𝐴𝑧
95, 8nfan 1899 . . . 4 𝑥(𝑦𝐵𝑤𝑤𝐴𝑧)
109nfex 2323 . . 3 𝑥𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)
1110nfopab 5176 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
121, 11nfcxfr 2889 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wnfc 2876   class class class wbr 5107  {copab 5169  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-co 5647
This theorem is referenced by:  csbcog  6270  nffun  6539  nftpos  8240  nfwrecs  8293  cnmpt11  23550  cnmpt21  23558  poimirlem16  37630  poimirlem19  37633  choicefi  45194  cncficcgt0  45886  volioofmpt  45992  volicofmpt  45995  stoweidlem31  46029  stoweidlem59  46057
  Copyright terms: Public domain W3C validator