MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfco Structured version   Visualization version   GIF version

Theorem nfco 5879
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1 𝑥𝐴
nfco.2 𝑥𝐵
Assertion
Ref Expression
nfco 𝑥(𝐴𝐵)

Proof of Theorem nfco
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 5698 . 2 (𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
2 nfcv 2903 . . . . . 6 𝑥𝑦
3 nfco.2 . . . . . 6 𝑥𝐵
4 nfcv 2903 . . . . . 6 𝑥𝑤
52, 3, 4nfbr 5195 . . . . 5 𝑥 𝑦𝐵𝑤
6 nfco.1 . . . . . 6 𝑥𝐴
7 nfcv 2903 . . . . . 6 𝑥𝑧
84, 6, 7nfbr 5195 . . . . 5 𝑥 𝑤𝐴𝑧
95, 8nfan 1897 . . . 4 𝑥(𝑦𝐵𝑤𝑤𝐴𝑧)
109nfex 2323 . . 3 𝑥𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)
1110nfopab 5217 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
121, 11nfcxfr 2901 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1776  wnfc 2888   class class class wbr 5148  {copab 5210  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-co 5698
This theorem is referenced by:  csbcog  6319  nffun  6591  nftpos  8285  nfwrecs  8340  cnmpt11  23687  cnmpt21  23695  poimirlem16  37623  poimirlem19  37626  choicefi  45143  cncficcgt0  45844  volioofmpt  45950  volicofmpt  45953  stoweidlem31  45987  stoweidlem59  46015
  Copyright terms: Public domain W3C validator