Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffun6 | Structured version Visualization version GIF version |
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
dffun6 | ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐹 | |
2 | nfcv 2907 | . 2 ⊢ Ⅎ𝑦𝐹 | |
3 | 1, 2 | dffun6f 6448 | 1 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃*wmo 2538 class class class wbr 5074 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: funmo 6450 dffun7 6461 fununfun 6482 funcnvsn 6484 funcnv2 6502 svrelfun 6506 fnres 6559 nfunsn 6811 dff3 6976 brdom3 10284 nqerf 10686 shftfn 14784 cnextfun 23215 perfdvf 25067 taylf 25520 funressnvmo 44539 |
Copyright terms: Public domain | W3C validator |