MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Structured version   Visualization version   GIF version

Theorem dffun6 6574
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dffun6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun2 6571 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 breq2 5147 . . . . 5 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
32mo4 2566 . . . 4 (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
43albii 1819 . . 3 (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
54anbi2i 623 . 2 ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
61, 5bitr4i 278 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  ∃*wmo 2538   class class class wbr 5143  Rel wrel 5690  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-fun 6563
This theorem is referenced by:  dffun3  6575  funmo  6581  funmoOLD  6582  dffun7  6593  fununfun  6614  funcnvsn  6616  funcnv2  6634  svrelfun  6638  funimaexg  6653  fnres  6695  nfunsn  6948  dff3  7120  brdom3  10568  nqerf  10970  shftfn  15112  cnextfun  24072  perfdvf  25938  taylf  26402  funressnvmo  47057
  Copyright terms: Public domain W3C validator