| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| dffun6 | ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 6546 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
| 2 | breq2 5128 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
| 3 | 2 | mo4 2566 | . . . 4 ⊢ (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃*wmo 2538 class class class wbr 5124 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: dffun3 6550 funmo 6556 funmoOLD 6557 dffun7 6568 fununfun 6589 funcnvsn 6591 funcnv2 6609 svrelfun 6613 funimaexg 6628 fnres 6670 nfunsn 6923 dff3 7095 brdom3 10547 nqerf 10949 shftfn 15097 cnextfun 24007 perfdvf 25861 taylf 26325 funressnvmo 47041 |
| Copyright terms: Public domain | W3C validator |