MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Structured version   Visualization version   GIF version

Theorem dffun6 6527
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dffun6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun2 6524 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 breq2 5114 . . . . 5 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
32mo4 2560 . . . 4 (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
43albii 1819 . . 3 (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
54anbi2i 623 . 2 ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
61, 5bitr4i 278 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  ∃*wmo 2532   class class class wbr 5110  Rel wrel 5646  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516
This theorem is referenced by:  dffun3  6528  funmo  6534  funmoOLD  6535  dffun7  6546  fununfun  6567  funcnvsn  6569  funcnv2  6587  svrelfun  6591  funimaexg  6606  fnres  6648  nfunsn  6903  dff3  7075  brdom3  10488  nqerf  10890  shftfn  15046  cnextfun  23958  perfdvf  25811  taylf  26275  funressnvmo  47050
  Copyright terms: Public domain W3C validator