MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Structured version   Visualization version   GIF version

Theorem dffun6 6492
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2144, ax-12 2180. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dffun6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun2 6491 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 breq2 5093 . . . . 5 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
32mo4 2561 . . . 4 (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
43albii 1820 . . 3 (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
54anbi2i 623 . 2 ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
61, 5bitr4i 278 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  ∃*wmo 2533   class class class wbr 5089  Rel wrel 5619  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6483
This theorem is referenced by:  dffun3  6493  funmo  6497  dffun7  6508  fununfun  6529  funcnvsn  6531  funcnv2  6549  svrelfun  6553  funimaexg  6568  fnres  6608  nfunsn  6861  dff3  7033  brdom3  10419  nqerf  10821  shftfn  14980  cnextfun  23979  perfdvf  25831  taylf  26295  funressnvmo  47084
  Copyright terms: Public domain W3C validator