![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun6 | Structured version Visualization version GIF version |
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 19-Dec-2024.) |
Ref | Expression |
---|---|
dffun6 | ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 6583 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
2 | breq2 5170 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
3 | 2 | mo4 2569 | . . . 4 ⊢ (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
4 | 3 | albii 1817 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
5 | 4 | anbi2i 622 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) |
6 | 1, 5 | bitr4i 278 | 1 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃*wmo 2541 class class class wbr 5166 Rel wrel 5705 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: dffun3 6587 funmo 6593 funmoOLD 6594 dffun7 6605 fununfun 6626 funcnvsn 6628 funcnv2 6646 svrelfun 6650 funimaexg 6664 fnres 6707 nfunsn 6962 dff3 7134 brdom3 10597 nqerf 10999 shftfn 15122 cnextfun 24093 perfdvf 25958 taylf 26420 funressnvmo 46960 |
Copyright terms: Public domain | W3C validator |