| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| dffun6 | ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 6521 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
| 2 | breq2 5111 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
| 3 | 2 | mo4 2559 | . . . 4 ⊢ (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃*wmo 2531 class class class wbr 5107 Rel wrel 5643 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: dffun3 6525 funmo 6531 funmoOLD 6532 dffun7 6543 fununfun 6564 funcnvsn 6566 funcnv2 6584 svrelfun 6588 funimaexg 6603 fnres 6645 nfunsn 6900 dff3 7072 brdom3 10481 nqerf 10883 shftfn 15039 cnextfun 23951 perfdvf 25804 taylf 26268 funressnvmo 47046 |
| Copyright terms: Public domain | W3C validator |