MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Structured version   Visualization version   GIF version

Theorem dffun6 6567
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2130, ax-12 2167. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dffun6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun2 6564 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 breq2 5157 . . . . 5 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
32mo4 2555 . . . 4 (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
43albii 1814 . . 3 (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
54anbi2i 621 . 2 ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
61, 5bitr4i 277 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532  ∃*wmo 2527   class class class wbr 5153  Rel wrel 5687  Fun wfun 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-fun 6556
This theorem is referenced by:  dffun3  6568  funmo  6574  funmoOLD  6575  dffun7  6586  fununfun  6607  funcnvsn  6609  funcnv2  6627  svrelfun  6631  funimaexg  6645  fnres  6688  nfunsn  6943  dff3  7114  brdom3  10571  nqerf  10973  shftfn  15078  cnextfun  24059  perfdvf  25923  taylf  26388  funressnvmo  46660
  Copyright terms: Public domain W3C validator