MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Structured version   Visualization version   GIF version

Theorem dffun6 6493
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dffun6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun2 6492 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 breq2 5096 . . . . 5 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
32mo4 2559 . . . 4 (∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
43albii 1819 . . 3 (∀𝑥∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧))
54anbi2i 623 . 2 ((Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦) ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
61, 5bitr4i 278 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  ∃*wmo 2531   class class class wbr 5092  Rel wrel 5624  Fun wfun 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-fun 6484
This theorem is referenced by:  dffun3  6494  funmo  6498  dffun7  6509  fununfun  6530  funcnvsn  6532  funcnv2  6550  svrelfun  6554  funimaexg  6569  fnres  6609  nfunsn  6862  dff3  7034  brdom3  10422  nqerf  10824  shftfn  14980  cnextfun  23949  perfdvf  25802  taylf  26266  funressnvmo  47029
  Copyright terms: Public domain W3C validator