![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVfun | Structured version Visualization version GIF version |
Description: Our definition of the function predicate df-funALTV 37552 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6546, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
funALTVfun | ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvrefrelcoss2 37407 | . . . 4 ⊢ ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I ) | |
2 | dfcoss3 37284 | . . . . 5 ⊢ ≀ 𝐹 = (𝐹 ∘ ◡𝐹) | |
3 | 2 | sseq1i 4011 | . . . 4 ⊢ ( ≀ 𝐹 ⊆ I ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ ( CnvRefRel ≀ 𝐹 ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
5 | 4 | anbi2ci 626 | . 2 ⊢ (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) |
6 | df-funALTV 37552 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
7 | df-fun 6546 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ⊆ wss 3949 I cid 5574 ◡ccnv 5676 ∘ ccom 5681 Rel wrel 5682 Fun wfun 6538 ≀ ccoss 37043 CnvRefRel wcnvrefrel 37052 FunALTV wfunALTV 37074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-fun 6546 df-coss 37281 df-cnvrefrel 37397 df-funALTV 37552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |