Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVfun Structured version   Visualization version   GIF version

Theorem funALTVfun 36809
Description: Our definition of the function predicate df-funALTV 36793 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6435, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
funALTVfun ( FunALTV 𝐹 ↔ Fun 𝐹)

Proof of Theorem funALTVfun
StepHypRef Expression
1 cnvrefrelcoss2 36651 . . . 4 ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I )
2 dfcoss3 36540 . . . . 5 𝐹 = (𝐹𝐹)
32sseq1i 3949 . . . 4 ( ≀ 𝐹 ⊆ I ↔ (𝐹𝐹) ⊆ I )
41, 3bitri 274 . . 3 ( CnvRefRel ≀ 𝐹 ↔ (𝐹𝐹) ⊆ I )
54anbi2ci 625 . 2 (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
6 df-funALTV 36793 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
7 df-fun 6435 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
85, 6, 73bitr4i 303 1 ( FunALTV 𝐹 ↔ Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wss 3887   I cid 5488  ccnv 5588  ccom 5593  Rel wrel 5594  Fun wfun 6427  ccoss 36333   CnvRefRel wcnvrefrel 36342   FunALTV wfunALTV 36364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-fun 6435  df-coss 36537  df-cnvrefrel 36643  df-funALTV 36793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator