Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVfun | Structured version Visualization version GIF version |
Description: Our definition of the function predicate df-funALTV 36793 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6435, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
funALTVfun | ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvrefrelcoss2 36651 | . . . 4 ⊢ ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I ) | |
2 | dfcoss3 36540 | . . . . 5 ⊢ ≀ 𝐹 = (𝐹 ∘ ◡𝐹) | |
3 | 2 | sseq1i 3949 | . . . 4 ⊢ ( ≀ 𝐹 ⊆ I ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
4 | 1, 3 | bitri 274 | . . 3 ⊢ ( CnvRefRel ≀ 𝐹 ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
5 | 4 | anbi2ci 625 | . 2 ⊢ (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) |
6 | df-funALTV 36793 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
7 | df-fun 6435 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊆ wss 3887 I cid 5488 ◡ccnv 5588 ∘ ccom 5593 Rel wrel 5594 Fun wfun 6427 ≀ ccoss 36333 CnvRefRel wcnvrefrel 36342 FunALTV wfunALTV 36364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-coss 36537 df-cnvrefrel 36643 df-funALTV 36793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |