| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVfun | Structured version Visualization version GIF version | ||
| Description: Our definition of the function predicate df-funALTV 38667 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6501, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| funALTVfun | ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvrefrelcoss2 38521 | . . . 4 ⊢ ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I ) | |
| 2 | dfcoss3 38398 | . . . . 5 ⊢ ≀ 𝐹 = (𝐹 ∘ ◡𝐹) | |
| 3 | 2 | sseq1i 3972 | . . . 4 ⊢ ( ≀ 𝐹 ⊆ I ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 4 | 1, 3 | bitri 275 | . . 3 ⊢ ( CnvRefRel ≀ 𝐹 ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 5 | 4 | anbi2ci 625 | . 2 ⊢ (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) |
| 6 | df-funALTV 38667 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
| 7 | df-fun 6501 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3911 I cid 5525 ◡ccnv 5630 ∘ ccom 5635 Rel wrel 5636 Fun wfun 6493 ≀ ccoss 38162 CnvRefRel wcnvrefrel 38171 FunALTV wfunALTV 38193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-fun 6501 df-coss 38395 df-cnvrefrel 38511 df-funALTV 38667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |