![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVfun | Structured version Visualization version GIF version |
Description: Our definition of the function predicate df-funALTV 38018 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6545, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
funALTVfun | ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvrefrelcoss2 37873 | . . . 4 ⊢ ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I ) | |
2 | dfcoss3 37750 | . . . . 5 ⊢ ≀ 𝐹 = (𝐹 ∘ ◡𝐹) | |
3 | 2 | sseq1i 4010 | . . . 4 ⊢ ( ≀ 𝐹 ⊆ I ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ ( CnvRefRel ≀ 𝐹 ↔ (𝐹 ∘ ◡𝐹) ⊆ I ) |
5 | 4 | anbi2ci 624 | . 2 ⊢ (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) |
6 | df-funALTV 38018 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
7 | df-fun 6545 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊆ wss 3948 I cid 5573 ◡ccnv 5675 ∘ ccom 5680 Rel wrel 5681 Fun wfun 6537 ≀ ccoss 37509 CnvRefRel wcnvrefrel 37518 FunALTV wfunALTV 37540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-fun 6545 df-coss 37747 df-cnvrefrel 37863 df-funALTV 38018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |