| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun9 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| dffun9 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 6516 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | vex 3441 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | vex 3441 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brelrn 5888 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 → 𝑦 ∈ ran 𝐴) |
| 5 | 4 | pm4.71ri 560 | . . . . . 6 ⊢ (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
| 6 | 5 | mobii 2545 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
| 7 | df-rmo 3347 | . . . . 5 ⊢ (∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) | |
| 8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
| 9 | 8 | ralbii 3079 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
| 11 | 1, 10 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∃*wmo 2535 ∀wral 3048 ∃*wrmo 3346 class class class wbr 5095 dom cdm 5621 ran crn 5622 Rel wrel 5626 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 |
| This theorem is referenced by: brdom4 10432 |
| Copyright terms: Public domain | W3C validator |