Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffun9 | Structured version Visualization version GIF version |
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
dffun9 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun7 6445 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
2 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | vex 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brelrn 5840 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 → 𝑦 ∈ ran 𝐴) |
5 | 4 | pm4.71ri 560 | . . . . . 6 ⊢ (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
6 | 5 | mobii 2548 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
7 | df-rmo 3071 | . . . . 5 ⊢ (∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) | |
8 | 6, 7 | bitr4i 277 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
9 | 8 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
10 | 9 | anbi2i 622 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
11 | 1, 10 | bitri 274 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃*wmo 2538 ∀wral 3063 ∃*wrmo 3066 class class class wbr 5070 dom cdm 5580 ran crn 5581 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 |
This theorem is referenced by: brdom4 10217 |
Copyright terms: Public domain | W3C validator |