![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun5 | Structured version Visualization version GIF version |
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dffun5 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun3 6562 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | |
2 | df-br 5149 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 2 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
4 | 3 | albii 1814 | . . . . 5 ⊢ (∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
5 | 4 | exbii 1843 | . . . 4 ⊢ (∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
6 | 5 | albii 1814 | . . 3 ⊢ (∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
7 | 6 | anbi2i 622 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧))) |
8 | 1, 7 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∃wex 1774 ∈ wcel 2099 ⟨cop 4635 class class class wbr 5148 Rel wrel 5683 Fun wfun 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-fun 6550 |
This theorem is referenced by: funimaexgOLD 6640 fvn0ssdmfun 7084 uzrdgfni 13956 noseqrdgfn 28192 dffrege115 43408 |
Copyright terms: Public domain | W3C validator |