![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun5 | Structured version Visualization version GIF version |
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dffun5 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun3 6511 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | |
2 | df-br 5107 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 2 | imbi1i 350 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
4 | 3 | albii 1822 | . . . . 5 ⊢ (∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
5 | 4 | exbii 1851 | . . . 4 ⊢ (∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
6 | 5 | albii 1822 | . . 3 ⊢ (∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧)) |
7 | 6 | anbi2i 624 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧))) |
8 | 1, 7 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∈ wcel 2107 ⟨cop 4593 class class class wbr 5106 Rel wrel 5639 Fun wfun 6491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-fun 6499 |
This theorem is referenced by: funimaexgOLD 6589 fvn0ssdmfun 7026 uzrdgfni 13869 dffrege115 42338 |
Copyright terms: Public domain | W3C validator |