MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun5 Structured version   Visualization version   GIF version

Theorem dffun5 6565
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun5 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun5
StepHypRef Expression
1 dffun3 6562 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
2 df-br 5149 . . . . . . 7 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32imbi1i 349 . . . . . 6 ((𝑥𝐴𝑦𝑦 = 𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
43albii 1814 . . . . 5 (∀𝑦(𝑥𝐴𝑦𝑦 = 𝑧) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
54exbii 1843 . . . 4 (∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧) ↔ ∃𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
65albii 1814 . . 3 (∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧) ↔ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
76anbi2i 622 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
81, 7bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774  wcel 2099  cop 4635   class class class wbr 5148  Rel wrel 5683  Fun wfun 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-fun 6550
This theorem is referenced by:  funimaexgOLD  6640  fvn0ssdmfun  7084  uzrdgfni  13956  noseqrdgfn  28192  dffrege115  43408
  Copyright terms: Public domain W3C validator