MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun5 Structured version   Visualization version   GIF version

Theorem dffun5 6495
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun5 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun5
StepHypRef Expression
1 dffun3 6493 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
2 df-br 5092 . . . . . . 7 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32imbi1i 349 . . . . . 6 ((𝑥𝐴𝑦𝑦 = 𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
43albii 1820 . . . . 5 (∀𝑦(𝑥𝐴𝑦𝑦 = 𝑧) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
54exbii 1849 . . . 4 (∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧) ↔ ∃𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
65albii 1820 . . 3 (∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧) ↔ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
76anbi2i 623 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
81, 7bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2111  cop 4582   class class class wbr 5091  Rel wrel 5621  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-fun 6483
This theorem is referenced by:  fvn0ssdmfun  7007  uzrdgfni  13865  noseqrdgfn  28237  dffrege115  44017
  Copyright terms: Public domain W3C validator