| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dffun5 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun3 6501 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | |
| 2 | df-br 5096 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 3 | 2 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
| 4 | 3 | albii 1820 | . . . . 5 ⊢ (∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
| 5 | 4 | exbii 1849 | . . . 4 ⊢ (∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
| 6 | 5 | albii 1820 | . . 3 ⊢ (∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
| 7 | 6 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 Rel wrel 5626 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6491 |
| This theorem is referenced by: fvn0ssdmfun 7016 uzrdgfni 13872 noseqrdgfn 28256 dffrege115 44135 |
| Copyright terms: Public domain | W3C validator |