MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3 Structured version   Visualization version   GIF version

Theorem dffun3 6556
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof shortened by SN, 19-Dec-2024.)
Assertion
Ref Expression
dffun3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun3
StepHypRef Expression
1 dffun6 6555 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 df-mo 2538 . . . 4 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
32albii 1818 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
43anbi2i 623 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
51, 4bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537  wex 1778  ∃*wmo 2536   class class class wbr 5125  Rel wrel 5672  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-fun 6544
This theorem is referenced by:  dffun5  6559  dffun6f  6560  sbcfung  6571  dffv2  6985
  Copyright terms: Public domain W3C validator