MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3 Structured version   Visualization version   GIF version

Theorem dffun3 6043
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem dffun3
StepHypRef Expression
1 dffun2 6042 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
2 breq2 4791 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐴𝑦𝑥𝐴𝑧))
32mo4 2666 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
4 mo2v 2625 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
53, 4bitr3i 266 . . . 4 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
65albii 1895 . . 3 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
76anbi2i 603 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
81, 7bitri 264 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1629  wex 1852  ∃*wmo 2619   class class class wbr 4787  Rel wrel 5255  Fun wfun 6026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-id 5158  df-cnv 5258  df-co 5259  df-fun 6034
This theorem is referenced by:  dffun5  6045  dffun6f  6046  sbcfung  6056  dffv2  6414
  Copyright terms: Public domain W3C validator