MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6610
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6708. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5850 . 2 Rel I
2 relcnv 6134 . . . . 5 Rel I
3 coi2 6294 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6173 . . . 4 I = I
64, 5eqtri 2768 . . 3 ( I ∘ I ) = I
76eqimssi 4069 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6575 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 710 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wss 3976   I cid 5592  ccnv 5699  ccom 5704  Rel wrel 5705  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  cnvresid  6657  idfn  6708  fvi  6998  resiexd  7253  ssdomg  9060  residfi  9406  bj-funidres  37117  tendo02  40744  grimidvtxedg  47760
  Copyright terms: Public domain W3C validator