MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6450
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6544. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5725 . 2 Rel I
2 relcnv 6001 . . . . 5 Rel I
3 coi2 6156 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6034 . . . 4 I = I
64, 5eqtri 2766 . . 3 ( I ∘ I ) = I
76eqimssi 3975 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6420 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 707 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3883   I cid 5479  ccnv 5579  ccom 5584  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  cnvresid  6497  idfn  6544  fnresiOLD  6546  fvi  6826  resiexd  7074  ssdomg  8741  residfi  9030  bj-funidres  35249  tendo02  38728
  Copyright terms: Public domain W3C validator