![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version |
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
funi | ⊢ Fun I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5486 | . 2 ⊢ Rel I | |
2 | relcnv 5748 | . . . . 5 ⊢ Rel ◡ I | |
3 | coi2 5897 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
5 | cnvi 5782 | . . . 4 ⊢ ◡ I = I | |
6 | 4, 5 | eqtri 2849 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
7 | 6 | eqimssi 3884 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
8 | df-fun 6129 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
9 | 1, 7, 8 | mpbir2an 702 | 1 ⊢ Fun I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ⊆ wss 3798 I cid 5251 ◡ccnv 5345 ∘ ccom 5350 Rel wrel 5351 Fun wfun 6121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-fun 6129 |
This theorem is referenced by: cnvresid 6205 fnresi 6245 fvi 6506 resiexd 6741 ssdomg 8274 residfi 8522 tendo02 36861 |
Copyright terms: Public domain | W3C validator |