| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version | ||
| Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6649. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| funi | ⊢ Fun I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5792 | . 2 ⊢ Rel I | |
| 2 | relcnv 6078 | . . . . 5 ⊢ Rel ◡ I | |
| 3 | coi2 6239 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
| 5 | cnvi 6117 | . . . 4 ⊢ ◡ I = I | |
| 6 | 4, 5 | eqtri 2753 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
| 7 | 6 | eqimssi 4010 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
| 8 | df-fun 6516 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
| 9 | 1, 7, 8 | mpbir2an 711 | 1 ⊢ Fun I |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 I cid 5535 ◡ccnv 5640 ∘ ccom 5645 Rel wrel 5646 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: cnvresid 6598 idfn 6649 fvi 6940 resiexd 7193 ssdomg 8974 residfi 9296 bj-funidres 37146 tendo02 40788 grimidvtxedg 47889 |
| Copyright terms: Public domain | W3C validator |