Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version |
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6560. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
funi | ⊢ Fun I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5736 | . 2 ⊢ Rel I | |
2 | relcnv 6012 | . . . . 5 ⊢ Rel ◡ I | |
3 | coi2 6167 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
5 | cnvi 6045 | . . . 4 ⊢ ◡ I = I | |
6 | 4, 5 | eqtri 2766 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
7 | 6 | eqimssi 3979 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
8 | df-fun 6435 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
9 | 1, 7, 8 | mpbir2an 708 | 1 ⊢ Fun I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 I cid 5488 ◡ccnv 5588 ∘ ccom 5593 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: cnvresid 6513 idfn 6560 fnresiOLD 6562 fvi 6844 resiexd 7092 ssdomg 8786 residfi 9100 bj-funidres 35322 tendo02 38801 |
Copyright terms: Public domain | W3C validator |