Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version |
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6544. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
funi | ⊢ Fun I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5725 | . 2 ⊢ Rel I | |
2 | relcnv 6001 | . . . . 5 ⊢ Rel ◡ I | |
3 | coi2 6156 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
5 | cnvi 6034 | . . . 4 ⊢ ◡ I = I | |
6 | 4, 5 | eqtri 2766 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
7 | 6 | eqimssi 3975 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
8 | df-fun 6420 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
9 | 1, 7, 8 | mpbir2an 707 | 1 ⊢ Fun I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 I cid 5479 ◡ccnv 5579 ∘ ccom 5584 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: cnvresid 6497 idfn 6544 fnresiOLD 6546 fvi 6826 resiexd 7074 ssdomg 8741 residfi 9030 bj-funidres 35249 tendo02 38728 |
Copyright terms: Public domain | W3C validator |