MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6520
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6616. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5772 . 2 Rel I
2 relcnv 6059 . . . . 5 Rel I
3 coi2 6218 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6095 . . . 4 I = I
64, 5eqtri 2756 . . 3 ( I ∘ I ) = I
76eqimssi 3991 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6490 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 711 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3898   I cid 5515  ccnv 5620  ccom 5625  Rel wrel 5626  Fun wfun 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-fun 6490
This theorem is referenced by:  cnvresid  6567  idfn  6616  f1oi  6808  fvi  6906  resiexd  7158  ssdomg  8931  residfi  9231  bj-funidres  37218  tendo02  40909  grimidvtxedg  48012
  Copyright terms: Public domain W3C validator