MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6581
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6679. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5827 . 2 Rel I
2 relcnv 6104 . . . . 5 Rel I
3 coi2 6263 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6142 . . . 4 I = I
64, 5eqtri 2761 . . 3 ( I ∘ I ) = I
76eqimssi 4043 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6546 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 710 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wss 3949   I cid 5574  ccnv 5676  ccom 5681  Rel wrel 5682  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-fun 6546
This theorem is referenced by:  cnvresid  6628  idfn  6679  fvi  6968  resiexd  7218  ssdomg  8996  residfi  9333  bj-funidres  36032  tendo02  39658
  Copyright terms: Public domain W3C validator