MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6548
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6646. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5789 . 2 Rel I
2 relcnv 6075 . . . . 5 Rel I
3 coi2 6236 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6114 . . . 4 I = I
64, 5eqtri 2752 . . 3 ( I ∘ I ) = I
76eqimssi 4007 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6513 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 711 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3914   I cid 5532  ccnv 5637  ccom 5642  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by:  cnvresid  6595  idfn  6646  fvi  6937  resiexd  7190  ssdomg  8971  residfi  9289  bj-funidres  37139  tendo02  40781  grimidvtxedg  47885
  Copyright terms: Public domain W3C validator