MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6513
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6609. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5766 . 2 Rel I
2 relcnv 6053 . . . . 5 Rel I
3 coi2 6211 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6088 . . . 4 I = I
64, 5eqtri 2754 . . 3 ( I ∘ I ) = I
76eqimssi 3995 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6483 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 711 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3902   I cid 5510  ccnv 5615  ccom 5620  Rel wrel 5621  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-fun 6483
This theorem is referenced by:  cnvresid  6560  idfn  6609  fvi  6898  resiexd  7150  ssdomg  8922  residfi  9222  bj-funidres  37191  tendo02  40832  grimidvtxedg  47922
  Copyright terms: Public domain W3C validator