MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6466
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6560. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5736 . 2 Rel I
2 relcnv 6012 . . . . 5 Rel I
3 coi2 6167 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6045 . . . 4 I = I
64, 5eqtri 2766 . . 3 ( I ∘ I ) = I
76eqimssi 3979 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6435 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 708 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3887   I cid 5488  ccnv 5588  ccom 5593  Rel wrel 5594  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by:  cnvresid  6513  idfn  6560  fnresiOLD  6562  fvi  6844  resiexd  7092  ssdomg  8786  residfi  9100  bj-funidres  35322  tendo02  38801
  Copyright terms: Public domain W3C validator