![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version |
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6708. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
funi | ⊢ Fun I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5850 | . 2 ⊢ Rel I | |
2 | relcnv 6134 | . . . . 5 ⊢ Rel ◡ I | |
3 | coi2 6294 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
5 | cnvi 6173 | . . . 4 ⊢ ◡ I = I | |
6 | 4, 5 | eqtri 2768 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
7 | 6 | eqimssi 4069 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
8 | df-fun 6575 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
9 | 1, 7, 8 | mpbir2an 710 | 1 ⊢ Fun I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 I cid 5592 ◡ccnv 5699 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: cnvresid 6657 idfn 6708 fvi 6998 resiexd 7253 ssdomg 9060 residfi 9406 bj-funidres 37117 tendo02 40744 grimidvtxedg 47760 |
Copyright terms: Public domain | W3C validator |