| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version | ||
| Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6666. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| funi | ⊢ Fun I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5805 | . 2 ⊢ Rel I | |
| 2 | relcnv 6091 | . . . . 5 ⊢ Rel ◡ I | |
| 3 | coi2 6252 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
| 5 | cnvi 6130 | . . . 4 ⊢ ◡ I = I | |
| 6 | 4, 5 | eqtri 2758 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
| 7 | 6 | eqimssi 4019 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
| 8 | df-fun 6533 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
| 9 | 1, 7, 8 | mpbir2an 711 | 1 ⊢ Fun I |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 I cid 5547 ◡ccnv 5653 ∘ ccom 5658 Rel wrel 5659 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: cnvresid 6615 idfn 6666 fvi 6955 resiexd 7208 ssdomg 9014 residfi 9350 bj-funidres 37169 tendo02 40806 grimidvtxedg 47898 |
| Copyright terms: Public domain | W3C validator |