MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6551
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6649. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5792 . 2 Rel I
2 relcnv 6078 . . . . 5 Rel I
3 coi2 6239 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6117 . . . 4 I = I
64, 5eqtri 2753 . . 3 ( I ∘ I ) = I
76eqimssi 4010 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6516 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 711 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3917   I cid 5535  ccnv 5640  ccom 5645  Rel wrel 5646  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516
This theorem is referenced by:  cnvresid  6598  idfn  6649  fvi  6940  resiexd  7193  ssdomg  8974  residfi  9296  bj-funidres  37146  tendo02  40788  grimidvtxedg  47889
  Copyright terms: Public domain W3C validator