![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun8 | Structured version Visualization version GIF version |
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 6601. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffun8 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun7 6601 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
2 | moeu 2583 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦)) | |
3 | vex 3485 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm 5918 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑦 𝑥𝐴𝑦 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦)) | |
6 | 4, 5 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦)) |
7 | 2, 6 | bitrid 283 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 → (∃*𝑦 𝑥𝐴𝑦 ↔ ∃!𝑦 𝑥𝐴𝑦)) |
8 | 7 | ralbiia 3091 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦) |
9 | 8 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
10 | 1, 9 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2108 ∃*wmo 2538 ∃!weu 2568 ∀wral 3061 class class class wbr 5151 dom cdm 5693 Rel wrel 5698 Fun wfun 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-fun 6571 |
This theorem is referenced by: dfdfat2 47106 |
Copyright terms: Public domain | W3C validator |