| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun8 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 6573. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffun8 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 6573 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | moeu 2581 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦)) | |
| 3 | vex 3467 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm 5891 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑦 𝑥𝐴𝑦 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦)) | |
| 6 | 4, 5 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦)) |
| 7 | 2, 6 | bitrid 283 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 → (∃*𝑦 𝑥𝐴𝑦 ↔ ∃!𝑦 𝑥𝐴𝑦)) |
| 8 | 7 | ralbiia 3079 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦) |
| 9 | 8 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
| 10 | 1, 9 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃*wmo 2536 ∃!weu 2566 ∀wral 3050 class class class wbr 5123 dom cdm 5665 Rel wrel 5670 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-fun 6543 |
| This theorem is referenced by: dfdfat2 47098 |
| Copyright terms: Public domain | W3C validator |