| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcocnv2 | Structured version Visualization version GIF version | ||
| Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6488 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 3 | iss 5990 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
| 4 | dfdm4 5842 | . . . . . . 7 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 5 | dmcoeq 5926 | . . . . . . 7 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
| 7 | df-rn 5634 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 8 | 6, 7 | eqtr4i 2755 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
| 9 | 8 | reseq2i 5931 | . . . 4 ⊢ ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹) |
| 10 | 9 | eqeq2i 2742 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| 11 | 3, 10 | bitri 275 | . 2 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| 12 | 2, 11 | sylib 218 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 I cid 5517 ◡ccnv 5622 dom cdm 5623 ran crn 5624 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-fun 6488 |
| This theorem is referenced by: fococnv2 6794 f1cocnv2 6796 funcoeqres 6799 fcoinver 32566 tocyc01 33073 cocnv 37704 frege131d 43737 gricushgr 47902 |
| Copyright terms: Public domain | W3C validator |