![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcocnv2 | Structured version Visualization version GIF version |
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6542 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | 1 | simprbi 497 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
3 | iss 6033 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
4 | dfdm4 5893 | . . . . . . 7 ⊢ dom 𝐹 = ran ◡𝐹 | |
5 | dmcoeq 5971 | . . . . . . 7 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
7 | df-rn 5686 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
8 | 6, 7 | eqtr4i 2763 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
9 | 8 | reseq2i 5976 | . . . 4 ⊢ ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹) |
10 | 9 | eqeq2i 2745 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
11 | 3, 10 | bitri 274 | . 2 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
12 | 2, 11 | sylib 217 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3947 I cid 5572 ◡ccnv 5674 dom cdm 5675 ran crn 5676 ↾ cres 5677 ∘ ccom 5679 Rel wrel 5680 Fun wfun 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-fun 6542 |
This theorem is referenced by: fococnv2 6856 f1cocnv2 6858 funcoeqres 6861 fcoinver 31822 tocyc01 32264 cocnv 36581 frege131d 42500 isomushgr 46480 |
Copyright terms: Public domain | W3C validator |