Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcocnv2 | Structured version Visualization version GIF version |
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6337 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | 1 | simprbi 500 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
3 | iss 5875 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
4 | dfdm4 5735 | . . . . . . 7 ⊢ dom 𝐹 = ran ◡𝐹 | |
5 | dmcoeq 5815 | . . . . . . 7 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
7 | df-rn 5535 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
8 | 6, 7 | eqtr4i 2784 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
9 | 8 | reseq2i 5820 | . . . 4 ⊢ ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹) |
10 | 9 | eqeq2i 2771 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
11 | 3, 10 | bitri 278 | . 2 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
12 | 2, 11 | sylib 221 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ⊆ wss 3858 I cid 5429 ◡ccnv 5523 dom cdm 5524 ran crn 5525 ↾ cres 5526 ∘ ccom 5528 Rel wrel 5529 Fun wfun 6329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-fun 6337 |
This theorem is referenced by: fococnv2 6627 f1cocnv2 6629 funcoeqres 6632 fcoinver 30468 tocyc01 30911 cocnv 35465 frege131d 40860 isomushgr 44733 |
Copyright terms: Public domain | W3C validator |