MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcocnv2 Structured version   Visualization version   GIF version

Theorem funcocnv2 6788
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 6483 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
21simprbi 496 . 2 (Fun 𝐹 → (𝐹𝐹) ⊆ I )
3 iss 5984 . . 3 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ dom (𝐹𝐹)))
4 dfdm4 5835 . . . . . . 7 dom 𝐹 = ran 𝐹
5 dmcoeq 5920 . . . . . . 7 (dom 𝐹 = ran 𝐹 → dom (𝐹𝐹) = dom 𝐹)
64, 5ax-mp 5 . . . . . 6 dom (𝐹𝐹) = dom 𝐹
7 df-rn 5627 . . . . . 6 ran 𝐹 = dom 𝐹
86, 7eqtr4i 2757 . . . . 5 dom (𝐹𝐹) = ran 𝐹
98reseq2i 5925 . . . 4 ( I ↾ dom (𝐹𝐹)) = ( I ↾ ran 𝐹)
109eqeq2i 2744 . . 3 ((𝐹𝐹) = ( I ↾ dom (𝐹𝐹)) ↔ (𝐹𝐹) = ( I ↾ ran 𝐹))
113, 10bitri 275 . 2 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ ran 𝐹))
122, 11sylib 218 1 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3902   I cid 5510  ccnv 5615  dom cdm 5616  ran crn 5617  cres 5618  ccom 5620  Rel wrel 5621  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-fun 6483
This theorem is referenced by:  fococnv2  6789  f1cocnv2  6791  funcoeqres  6794  fcoinver  32579  tocyc01  33082  cocnv  37764  frege131d  43796  gricushgr  47947
  Copyright terms: Public domain W3C validator