MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcocnv2 Structured version   Visualization version   GIF version

Theorem funcocnv2 6828
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 6516 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
21simprbi 496 . 2 (Fun 𝐹 → (𝐹𝐹) ⊆ I )
3 iss 6009 . . 3 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ dom (𝐹𝐹)))
4 dfdm4 5862 . . . . . . 7 dom 𝐹 = ran 𝐹
5 dmcoeq 5945 . . . . . . 7 (dom 𝐹 = ran 𝐹 → dom (𝐹𝐹) = dom 𝐹)
64, 5ax-mp 5 . . . . . 6 dom (𝐹𝐹) = dom 𝐹
7 df-rn 5652 . . . . . 6 ran 𝐹 = dom 𝐹
86, 7eqtr4i 2756 . . . . 5 dom (𝐹𝐹) = ran 𝐹
98reseq2i 5950 . . . 4 ( I ↾ dom (𝐹𝐹)) = ( I ↾ ran 𝐹)
109eqeq2i 2743 . . 3 ((𝐹𝐹) = ( I ↾ dom (𝐹𝐹)) ↔ (𝐹𝐹) = ( I ↾ ran 𝐹))
113, 10bitri 275 . 2 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ ran 𝐹))
122, 11sylib 218 1 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3917   I cid 5535  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  ccom 5645  Rel wrel 5646  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-fun 6516
This theorem is referenced by:  fococnv2  6829  f1cocnv2  6831  funcoeqres  6834  fcoinver  32540  tocyc01  33082  cocnv  37726  frege131d  43760  gricushgr  47921
  Copyright terms: Public domain W3C validator