![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcocnv2 | Structured version Visualization version GIF version |
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6539 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | 1 | simprbi 496 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
3 | iss 6029 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
4 | dfdm4 5889 | . . . . . . 7 ⊢ dom 𝐹 = ran ◡𝐹 | |
5 | dmcoeq 5967 | . . . . . . 7 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
7 | df-rn 5680 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
8 | 6, 7 | eqtr4i 2757 | . . . . 5 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
9 | 8 | reseq2i 5972 | . . . 4 ⊢ ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹) |
10 | 9 | eqeq2i 2739 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
11 | 3, 10 | bitri 275 | . 2 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
12 | 2, 11 | sylib 217 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊆ wss 3943 I cid 5566 ◡ccnv 5668 dom cdm 5669 ran crn 5670 ↾ cres 5671 ∘ ccom 5673 Rel wrel 5674 Fun wfun 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-fun 6539 |
This theorem is referenced by: fococnv2 6853 f1cocnv2 6855 funcoeqres 6858 fcoinver 32344 tocyc01 32783 cocnv 37106 frege131d 43091 isomushgr 47066 |
Copyright terms: Public domain | W3C validator |