MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcocnv2 Structured version   Visualization version   GIF version

Theorem funcocnv2 6887
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 6575 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
21simprbi 496 . 2 (Fun 𝐹 → (𝐹𝐹) ⊆ I )
3 iss 6064 . . 3 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ dom (𝐹𝐹)))
4 dfdm4 5920 . . . . . . 7 dom 𝐹 = ran 𝐹
5 dmcoeq 6001 . . . . . . 7 (dom 𝐹 = ran 𝐹 → dom (𝐹𝐹) = dom 𝐹)
64, 5ax-mp 5 . . . . . 6 dom (𝐹𝐹) = dom 𝐹
7 df-rn 5711 . . . . . 6 ran 𝐹 = dom 𝐹
86, 7eqtr4i 2771 . . . . 5 dom (𝐹𝐹) = ran 𝐹
98reseq2i 6006 . . . 4 ( I ↾ dom (𝐹𝐹)) = ( I ↾ ran 𝐹)
109eqeq2i 2753 . . 3 ((𝐹𝐹) = ( I ↾ dom (𝐹𝐹)) ↔ (𝐹𝐹) = ( I ↾ ran 𝐹))
113, 10bitri 275 . 2 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ ran 𝐹))
122, 11sylib 218 1 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3976   I cid 5592  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704  Rel wrel 5705  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6575
This theorem is referenced by:  fococnv2  6888  f1cocnv2  6890  funcoeqres  6893  fcoinver  32626  tocyc01  33111  cocnv  37685  frege131d  43726  gricushgr  47770
  Copyright terms: Public domain W3C validator