MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqinf Structured version   Visualization version   GIF version

Theorem eqinf 9524
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
eqinf (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑦,𝐶,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)

Proof of Theorem eqinf
StepHypRef Expression
1 df-inf 9483 . . 3 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
3 cnvso 6308 . . . . . 6 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 218 . . . . 5 (𝜑𝑅 Or 𝐴)
54eqsup 9496 . . . 4 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
6 brcnvg 5890 . . . . . . . . . . . 12 ((𝐶𝐴𝑦 ∈ V) → (𝐶𝑅𝑦𝑦𝑅𝐶))
76bicomd 223 . . . . . . . . . . 11 ((𝐶𝐴𝑦 ∈ V) → (𝑦𝑅𝐶𝐶𝑅𝑦))
87elvd 3486 . . . . . . . . . 10 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
98notbid 318 . . . . . . . . 9 (𝐶𝐴 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐶𝑅𝑦))
109ralbidv 3178 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ↔ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦))
11 vex 3484 . . . . . . . . . . . 12 𝑦 ∈ V
12 brcnvg 5890 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ 𝐶𝐴) → (𝑦𝑅𝐶𝐶𝑅𝑦))
1311, 12mpan 690 . . . . . . . . . . 11 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
1413bicomd 223 . . . . . . . . . 10 (𝐶𝐴 → (𝐶𝑅𝑦𝑦𝑅𝐶))
15 vex 3484 . . . . . . . . . . . . . 14 𝑧 ∈ V
1611, 15brcnv 5893 . . . . . . . . . . . . 13 (𝑦𝑅𝑧𝑧𝑅𝑦)
1716a1i 11 . . . . . . . . . . . 12 (𝐶𝐴 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1817bicomd 223 . . . . . . . . . . 11 (𝐶𝐴 → (𝑧𝑅𝑦𝑦𝑅𝑧))
1918rexbidv 3179 . . . . . . . . . 10 (𝐶𝐴 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧))
2014, 19imbi12d 344 . . . . . . . . 9 (𝐶𝐴 → ((𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2120ralbidv 3178 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2210, 21anbi12d 632 . . . . . . 7 (𝐶𝐴 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2322pm5.32i 574 . . . . . 6 ((𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
24 3anass 1095 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
25 3anass 1095 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2623, 24, 253bitr4i 303 . . . . 5 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2726biimpi 216 . . . 4 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
285, 27impel 505 . . 3 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → sup(𝐵, 𝐴, 𝑅) = 𝐶)
291, 28eqtrid 2789 . 2 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → inf(𝐵, 𝐴, 𝑅) = 𝐶)
3029ex 412 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480   class class class wbr 5143   Or wor 5591  ccnv 5684  supcsup 9480  infcinf 9481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-po 5592  df-so 5593  df-cnv 5693  df-iota 6514  df-riota 7388  df-sup 9482  df-inf 9483
This theorem is referenced by:  eqinfd  9525  infxr  45378
  Copyright terms: Public domain W3C validator