Proof of Theorem infval
| Step | Hyp | Ref
| Expression |
| 1 | | df-inf 9483 |
. 2
⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) |
| 2 | | infexd.1 |
. . . . 5
⊢ (𝜑 → 𝑅 Or 𝐴) |
| 3 | | cnvso 6308 |
. . . . 5
⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
| 4 | 2, 3 | sylib 218 |
. . . 4
⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 5 | 4 | supval2 9495 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
| 6 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 7 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 8 | 6, 7 | brcnv 5893 |
. . . . . . . 8
⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
| 10 | 9 | notbid 318 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)) |
| 11 | 10 | ralbidv 3178 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
| 12 | 7, 6 | brcnv 5893 |
. . . . . . . 8
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
| 14 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 15 | 7, 14 | brcnv 5893 |
. . . . . . . . 9
⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
| 16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦)) |
| 17 | 16 | rexbidv 3179 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 18 | 13, 17 | imbi12d 344 |
. . . . . 6
⊢ (𝜑 → ((𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 19 | 18 | ralbidv 3178 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 20 | 11, 19 | anbi12d 632 |
. . . 4
⊢ (𝜑 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
| 21 | 20 | riotabidv 7390 |
. . 3
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
| 22 | 5, 21 | eqtrd 2777 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
| 23 | 1, 22 | eqtrid 2789 |
1
⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |