Proof of Theorem infval
Step | Hyp | Ref
| Expression |
1 | | df-inf 8941 |
. 2
⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) |
2 | | infexd.1 |
. . . . 5
⊢ (𝜑 → 𝑅 Or 𝐴) |
3 | | cnvso 6118 |
. . . . 5
⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) |
4 | 2, 3 | sylib 221 |
. . . 4
⊢ (𝜑 → ◡𝑅 Or 𝐴) |
5 | 4 | supval2 8953 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
6 | | vex 3414 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
7 | | vex 3414 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
8 | 6, 7 | brcnv 5723 |
. . . . . . . 8
⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
10 | 9 | notbid 322 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)) |
11 | 10 | ralbidv 3127 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
12 | 7, 6 | brcnv 5723 |
. . . . . . . 8
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
14 | | vex 3414 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
15 | 7, 14 | brcnv 5723 |
. . . . . . . . 9
⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦)) |
17 | 16 | rexbidv 3222 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
18 | 13, 17 | imbi12d 349 |
. . . . . 6
⊢ (𝜑 → ((𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
19 | 18 | ralbidv 3127 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
20 | 11, 19 | anbi12d 634 |
. . . 4
⊢ (𝜑 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
21 | 20 | riotabidv 7111 |
. . 3
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
22 | 5, 21 | eqtrd 2794 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
23 | 1, 22 | syl5eq 2806 |
1
⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |