Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infexd | Structured version Visualization version GIF version |
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Ref | Expression |
---|---|
infexd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9202 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | infexd.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
3 | cnvso 6191 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
5 | 4 | supexd 9212 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) |
6 | 1, 5 | eqeltrid 2843 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 Or wor 5502 ◡ccnv 5588 supcsup 9199 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-po 5503 df-so 5504 df-cnv 5597 df-sup 9201 df-inf 9202 |
This theorem is referenced by: infex 9252 omsfval 32261 wsucex 33820 prproropf1olem4 44958 prmdvdsfmtnof1 45039 |
Copyright terms: Public domain | W3C validator |