| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infexd | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| Ref | Expression |
|---|---|
| infexd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9336 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | infexd.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 3 | cnvso 6242 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 5 | 4 | supexd 9346 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) |
| 6 | 1, 5 | eqeltrid 2837 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 Or wor 5528 ◡ccnv 5620 supcsup 9333 infcinf 9334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-po 5529 df-so 5530 df-cnv 5629 df-sup 9335 df-inf 9336 |
| This theorem is referenced by: infex 9388 omsfval 34330 wsucex 35891 prproropf1olem4 47633 prmdvdsfmtnof1 47714 |
| Copyright terms: Public domain | W3C validator |