MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infexd Structured version   Visualization version   GIF version

Theorem infexd 9242
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infexd (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem infexd
StepHypRef Expression
1 df-inf 9202 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 6191 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 217 . . 3 (𝜑𝑅 Or 𝐴)
54supexd 9212 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)
61, 5eqeltrid 2843 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432   Or wor 5502  ccnv 5588  supcsup 9199  infcinf 9200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-po 5503  df-so 5504  df-cnv 5597  df-sup 9201  df-inf 9202
This theorem is referenced by:  infex  9252  omsfval  32261  wsucex  33820  prproropf1olem4  44958  prmdvdsfmtnof1  45039
  Copyright terms: Public domain W3C validator