Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infexd | Structured version Visualization version GIF version |
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Ref | Expression |
---|---|
infexd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9132 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | infexd.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
3 | cnvso 6180 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
5 | 4 | supexd 9142 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) |
6 | 1, 5 | eqeltrid 2843 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 Or wor 5493 ◡ccnv 5579 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-cnv 5588 df-sup 9131 df-inf 9132 |
This theorem is referenced by: infex 9182 omsfval 32161 wsucex 33747 prproropf1olem4 44846 prmdvdsfmtnof1 44927 |
Copyright terms: Public domain | W3C validator |