| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infexd | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| Ref | Expression |
|---|---|
| infexd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9327 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | infexd.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 3 | cnvso 6235 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 5 | 4 | supexd 9337 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) |
| 6 | 1, 5 | eqeltrid 2835 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 Or wor 5523 ◡ccnv 5615 supcsup 9324 infcinf 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-po 5524 df-so 5525 df-cnv 5624 df-sup 9326 df-inf 9327 |
| This theorem is referenced by: infex 9379 omsfval 34305 wsucex 35866 prproropf1olem4 47543 prmdvdsfmtnof1 47624 |
| Copyright terms: Public domain | W3C validator |