MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infexd Structured version   Visualization version   GIF version

Theorem infexd 9552
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infexd (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem infexd
StepHypRef Expression
1 df-inf 9512 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 6319 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
54supexd 9522 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)
61, 5eqeltrid 2848 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   Or wor 5606  ccnv 5699  supcsup 9509  infcinf 9510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-po 5607  df-so 5608  df-cnv 5708  df-sup 9511  df-inf 9512
This theorem is referenced by:  infex  9562  omsfval  34259  wsucex  35790  prproropf1olem4  47380  prmdvdsfmtnof1  47461
  Copyright terms: Public domain W3C validator