| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infexd | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| Ref | Expression |
|---|---|
| infexd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9455 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | infexd.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 3 | cnvso 6277 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 5 | 4 | supexd 9465 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) |
| 6 | 1, 5 | eqeltrid 2838 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 Or wor 5560 ◡ccnv 5653 supcsup 9452 infcinf 9453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-po 5561 df-so 5562 df-cnv 5662 df-sup 9454 df-inf 9455 |
| This theorem is referenced by: infex 9507 omsfval 34326 wsucex 35844 prproropf1olem4 47520 prmdvdsfmtnof1 47601 |
| Copyright terms: Public domain | W3C validator |