MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infexd Structured version   Visualization version   GIF version

Theorem infexd 9505
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infexd (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem infexd
StepHypRef Expression
1 df-inf 9465 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 6288 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
54supexd 9475 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)
61, 5eqeltrid 2837 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3463   Or wor 5571  ccnv 5664  supcsup 9462  infcinf 9463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-po 5572  df-so 5573  df-cnv 5673  df-sup 9464  df-inf 9465
This theorem is referenced by:  infex  9515  omsfval  34255  wsucex  35786  prproropf1olem4  47451  prmdvdsfmtnof1  47532
  Copyright terms: Public domain W3C validator