Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infltoreq | Structured version Visualization version GIF version |
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infltoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infltoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infltoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
infltoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
infltoreq.5 | ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
infltoreq | ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infltoreq.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | cnvso 6180 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
4 | infltoreq.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | infltoreq.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | infltoreq.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
7 | infltoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) | |
8 | df-inf 9132 | . . . 4 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
9 | 7, 8 | eqtrdi 2795 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, ◡𝑅)) |
10 | 3, 4, 5, 6, 9 | supgtoreq 9159 | . 2 ⊢ (𝜑 → (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆)) |
11 | 6 | ne0d 4266 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
12 | fiinfcl 9190 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
13 | 1, 5, 11, 4, 12 | syl13anc 1370 | . . . . 5 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
14 | 7, 13 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
15 | brcnvg 5777 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝐶◡𝑅𝑆 ↔ 𝑆𝑅𝐶)) | |
16 | 15 | bicomd 222 | . . . 4 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
17 | 6, 14, 16 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
18 | 17 | orbi1d 913 | . 2 ⊢ (𝜑 → ((𝑆𝑅𝐶 ∨ 𝐶 = 𝑆) ↔ (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆))) |
19 | 10, 18 | mpbird 256 | 1 ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 Or wor 5493 ◡ccnv 5579 Fincfn 8691 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-om 7688 df-en 8692 df-fin 8695 df-sup 9131 df-inf 9132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |