MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infltoreq Structured version   Visualization version   GIF version

Theorem infltoreq 8966
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infltoreq.1 (𝜑𝑅 Or 𝐴)
infltoreq.2 (𝜑𝐵𝐴)
infltoreq.3 (𝜑𝐵 ∈ Fin)
infltoreq.4 (𝜑𝐶𝐵)
infltoreq.5 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
infltoreq (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))

Proof of Theorem infltoreq
StepHypRef Expression
1 infltoreq.1 . . . 4 (𝜑𝑅 Or 𝐴)
2 cnvso 6139 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
31, 2sylib 220 . . 3 (𝜑𝑅 Or 𝐴)
4 infltoreq.2 . . 3 (𝜑𝐵𝐴)
5 infltoreq.3 . . 3 (𝜑𝐵 ∈ Fin)
6 infltoreq.4 . . 3 (𝜑𝐶𝐵)
7 infltoreq.5 . . . 4 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
8 df-inf 8907 . . . 4 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
97, 8syl6eq 2872 . . 3 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
103, 4, 5, 6, 9supgtoreq 8934 . 2 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
116ne0d 4301 . . . . . 6 (𝜑𝐵 ≠ ∅)
12 fiinfcl 8965 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
131, 5, 11, 4, 12syl13anc 1368 . . . . 5 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
147, 13eqeltrd 2913 . . . 4 (𝜑𝑆𝐵)
15 brcnvg 5750 . . . . 5 ((𝐶𝐵𝑆𝐵) → (𝐶𝑅𝑆𝑆𝑅𝐶))
1615bicomd 225 . . . 4 ((𝐶𝐵𝑆𝐵) → (𝑆𝑅𝐶𝐶𝑅𝑆))
176, 14, 16syl2anc 586 . . 3 (𝜑 → (𝑆𝑅𝐶𝐶𝑅𝑆))
1817orbi1d 913 . 2 (𝜑 → ((𝑆𝑅𝐶𝐶 = 𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆)))
1910, 18mpbird 259 1 (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wss 3936  c0 4291   class class class wbr 5066   Or wor 5473  ccnv 5554  Fincfn 8509  supcsup 8904  infcinf 8905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-om 7581  df-1o 8102  df-er 8289  df-en 8510  df-fin 8513  df-sup 8906  df-inf 8907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator