MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infltoreq Structured version   Visualization version   GIF version

Theorem infltoreq 9394
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infltoreq.1 (𝜑𝑅 Or 𝐴)
infltoreq.2 (𝜑𝐵𝐴)
infltoreq.3 (𝜑𝐵 ∈ Fin)
infltoreq.4 (𝜑𝐶𝐵)
infltoreq.5 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
infltoreq (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))

Proof of Theorem infltoreq
StepHypRef Expression
1 infltoreq.1 . . . 4 (𝜑𝑅 Or 𝐴)
2 cnvso 6236 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
31, 2sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
4 infltoreq.2 . . 3 (𝜑𝐵𝐴)
5 infltoreq.3 . . 3 (𝜑𝐵 ∈ Fin)
6 infltoreq.4 . . 3 (𝜑𝐶𝐵)
7 infltoreq.5 . . . 4 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
8 df-inf 9333 . . . 4 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
97, 8eqtrdi 2780 . . 3 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
103, 4, 5, 6, 9supgtoreq 9361 . 2 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
116ne0d 4293 . . . . . 6 (𝜑𝐵 ≠ ∅)
12 fiinfcl 9393 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
131, 5, 11, 4, 12syl13anc 1374 . . . . 5 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
147, 13eqeltrd 2828 . . . 4 (𝜑𝑆𝐵)
15 brcnvg 5822 . . . . 5 ((𝐶𝐵𝑆𝐵) → (𝐶𝑅𝑆𝑆𝑅𝐶))
1615bicomd 223 . . . 4 ((𝐶𝐵𝑆𝐵) → (𝑆𝑅𝐶𝐶𝑅𝑆))
176, 14, 16syl2anc 584 . . 3 (𝜑 → (𝑆𝑅𝐶𝐶𝑅𝑆))
1817orbi1d 916 . 2 (𝜑 → ((𝑆𝑅𝐶𝐶 = 𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆)))
1910, 18mpbird 257 1 (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wss 3903  c0 4284   class class class wbr 5092   Or wor 5526  ccnv 5618  Fincfn 8872  supcsup 9330  infcinf 9331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-om 7800  df-en 8873  df-fin 8876  df-sup 9332  df-inf 9333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator