MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infltoreq Structured version   Visualization version   GIF version

Theorem infltoreq 9455
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infltoreq.1 (𝜑𝑅 Or 𝐴)
infltoreq.2 (𝜑𝐵𝐴)
infltoreq.3 (𝜑𝐵 ∈ Fin)
infltoreq.4 (𝜑𝐶𝐵)
infltoreq.5 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
infltoreq (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))

Proof of Theorem infltoreq
StepHypRef Expression
1 infltoreq.1 . . . 4 (𝜑𝑅 Or 𝐴)
2 cnvso 6261 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
31, 2sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
4 infltoreq.2 . . 3 (𝜑𝐵𝐴)
5 infltoreq.3 . . 3 (𝜑𝐵 ∈ Fin)
6 infltoreq.4 . . 3 (𝜑𝐶𝐵)
7 infltoreq.5 . . . 4 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
8 df-inf 9394 . . . 4 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
97, 8eqtrdi 2780 . . 3 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
103, 4, 5, 6, 9supgtoreq 9422 . 2 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
116ne0d 4305 . . . . . 6 (𝜑𝐵 ≠ ∅)
12 fiinfcl 9454 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
131, 5, 11, 4, 12syl13anc 1374 . . . . 5 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
147, 13eqeltrd 2828 . . . 4 (𝜑𝑆𝐵)
15 brcnvg 5843 . . . . 5 ((𝐶𝐵𝑆𝐵) → (𝐶𝑅𝑆𝑆𝑅𝐶))
1615bicomd 223 . . . 4 ((𝐶𝐵𝑆𝐵) → (𝑆𝑅𝐶𝐶𝑅𝑆))
176, 14, 16syl2anc 584 . . 3 (𝜑 → (𝑆𝑅𝐶𝐶𝑅𝑆))
1817orbi1d 916 . 2 (𝜑 → ((𝑆𝑅𝐶𝐶 = 𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆)))
1910, 18mpbird 257 1 (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wss 3914  c0 4296   class class class wbr 5107   Or wor 5545  ccnv 5637  Fincfn 8918  supcsup 9391  infcinf 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-om 7843  df-en 8919  df-fin 8922  df-sup 9393  df-inf 9394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator