| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infltoreq | Structured version Visualization version GIF version | ||
| Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| infltoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infltoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| infltoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| infltoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| infltoreq.5 | ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) |
| Ref | Expression |
|---|---|
| infltoreq | ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infltoreq.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | cnvso 6282 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 4 | infltoreq.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 5 | infltoreq.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 6 | infltoreq.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 7 | infltoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) | |
| 8 | df-inf 9460 | . . . 4 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 9 | 7, 8 | eqtrdi 2787 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, ◡𝑅)) |
| 10 | 3, 4, 5, 6, 9 | supgtoreq 9488 | . 2 ⊢ (𝜑 → (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆)) |
| 11 | 6 | ne0d 4322 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 12 | fiinfcl 9520 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
| 13 | 1, 5, 11, 4, 12 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| 14 | 7, 13 | eqeltrd 2835 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| 15 | brcnvg 5864 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝐶◡𝑅𝑆 ↔ 𝑆𝑅𝐶)) | |
| 16 | 15 | bicomd 223 | . . . 4 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
| 17 | 6, 14, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
| 18 | 17 | orbi1d 916 | . 2 ⊢ (𝜑 → ((𝑆𝑅𝐶 ∨ 𝐶 = 𝑆) ↔ (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆))) |
| 19 | 10, 18 | mpbird 257 | 1 ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 Or wor 5565 ◡ccnv 5658 Fincfn 8964 supcsup 9457 infcinf 9458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-om 7867 df-en 8965 df-fin 8968 df-sup 9459 df-inf 9460 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |