Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infltoreq | Structured version Visualization version GIF version |
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infltoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infltoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infltoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
infltoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
infltoreq.5 | ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
infltoreq | ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infltoreq.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | cnvso 6191 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
4 | infltoreq.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | infltoreq.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | infltoreq.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
7 | infltoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) | |
8 | df-inf 9202 | . . . 4 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
9 | 7, 8 | eqtrdi 2794 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, ◡𝑅)) |
10 | 3, 4, 5, 6, 9 | supgtoreq 9229 | . 2 ⊢ (𝜑 → (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆)) |
11 | 6 | ne0d 4269 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
12 | fiinfcl 9260 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
13 | 1, 5, 11, 4, 12 | syl13anc 1371 | . . . . 5 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
14 | 7, 13 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
15 | brcnvg 5788 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝐶◡𝑅𝑆 ↔ 𝑆𝑅𝐶)) | |
16 | 15 | bicomd 222 | . . . 4 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
17 | 6, 14, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
18 | 17 | orbi1d 914 | . 2 ⊢ (𝜑 → ((𝑆𝑅𝐶 ∨ 𝐶 = 𝑆) ↔ (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆))) |
19 | 10, 18 | mpbird 256 | 1 ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 Or wor 5502 ◡ccnv 5588 Fincfn 8733 supcsup 9199 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-om 7713 df-en 8734 df-fin 8737 df-sup 9201 df-inf 9202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |