Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infltoreq | Structured version Visualization version GIF version |
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infltoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infltoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infltoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
infltoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
infltoreq.5 | ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
infltoreq | ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infltoreq.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | cnvso 6151 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | 1, 2 | sylib 221 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
4 | infltoreq.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | infltoreq.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | infltoreq.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
7 | infltoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) | |
8 | df-inf 9059 | . . . 4 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
9 | 7, 8 | eqtrdi 2794 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, ◡𝑅)) |
10 | 3, 4, 5, 6, 9 | supgtoreq 9086 | . 2 ⊢ (𝜑 → (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆)) |
11 | 6 | ne0d 4250 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
12 | fiinfcl 9117 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
13 | 1, 5, 11, 4, 12 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
14 | 7, 13 | eqeltrd 2838 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
15 | brcnvg 5748 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝐶◡𝑅𝑆 ↔ 𝑆𝑅𝐶)) | |
16 | 15 | bicomd 226 | . . . 4 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
17 | 6, 14, 16 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
18 | 17 | orbi1d 917 | . 2 ⊢ (𝜑 → ((𝑆𝑅𝐶 ∨ 𝐶 = 𝑆) ↔ (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆))) |
19 | 10, 18 | mpbird 260 | 1 ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ⊆ wss 3866 ∅c0 4237 class class class wbr 5053 Or wor 5467 ◡ccnv 5550 Fincfn 8626 supcsup 9056 infcinf 9057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-om 7645 df-en 8627 df-fin 8630 df-sup 9058 df-inf 9059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |