MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfinfre Structured version   Visualization version   GIF version

Theorem dfinfre 11658
Description: The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
dfinfre (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfinfre
StepHypRef Expression
1 df-inf 8940 . 2 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2 df-sup 8939 . . 3 sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))}
3 ssel2 3887 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
4 vex 3413 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3413 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5brcnv 5722 . . . . . . . . . . . 12 (𝑥 < 𝑦𝑦 < 𝑥)
76notbii 323 . . . . . . . . . . 11 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
8 lenlt 10757 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
97, 8bitr4id 293 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
103, 9sylan2 595 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑦𝐴)) → (¬ 𝑥 < 𝑦𝑥𝑦))
1110ancoms 462 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
1211an32s 651 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥 < 𝑦𝑥𝑦))
1312ralbidva 3125 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 𝑥𝑦))
145, 4brcnv 5722 . . . . . . . . 9 (𝑦 < 𝑥𝑥 < 𝑦)
15 vex 3413 . . . . . . . . . . 11 𝑧 ∈ V
165, 15brcnv 5722 . . . . . . . . . 10 (𝑦 < 𝑧𝑧 < 𝑦)
1716rexbii 3175 . . . . . . . . 9 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑧 < 𝑦)
1814, 17imbi12i 354 . . . . . . . 8 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1918ralbii 3097 . . . . . . 7 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2019a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2113, 20anbi12d 633 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2221rabbidva 3390 . . . 4 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
2322unieqd 4812 . . 3 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
242, 23syl5eq 2805 . 2 (𝐴 ⊆ ℝ → sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
251, 24syl5eq 2805 1 (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  {crab 3074  wss 3858   cuni 4798   class class class wbr 5032  ccnv 5523  supcsup 8937  infcinf 8938  cr 10574   < clt 10713  cle 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-sup 8939  df-inf 8940  df-xr 10717  df-le 10719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator