MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfinfre Structured version   Visualization version   GIF version

Theorem dfinfre 12103
Description: The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
dfinfre (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfinfre
StepHypRef Expression
1 df-inf 9327 . 2 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2 df-sup 9326 . . 3 sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))}
3 ssel2 3924 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
4 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5brcnv 5821 . . . . . . . . . . . 12 (𝑥 < 𝑦𝑦 < 𝑥)
76notbii 320 . . . . . . . . . . 11 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
8 lenlt 11191 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
97, 8bitr4id 290 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
103, 9sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑦𝐴)) → (¬ 𝑥 < 𝑦𝑥𝑦))
1110ancoms 458 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
1211an32s 652 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥 < 𝑦𝑥𝑦))
1312ralbidva 3153 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 𝑥𝑦))
145, 4brcnv 5821 . . . . . . . . 9 (𝑦 < 𝑥𝑥 < 𝑦)
15 vex 3440 . . . . . . . . . . 11 𝑧 ∈ V
165, 15brcnv 5821 . . . . . . . . . 10 (𝑦 < 𝑧𝑧 < 𝑦)
1716rexbii 3079 . . . . . . . . 9 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑧 < 𝑦)
1814, 17imbi12i 350 . . . . . . . 8 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1918ralbii 3078 . . . . . . 7 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2019a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2113, 20anbi12d 632 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2221rabbidva 3401 . . . 4 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
2322unieqd 4869 . . 3 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
242, 23eqtrid 2778 . 2 (𝐴 ⊆ ℝ → sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
251, 24eqtrid 2778 1 (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3897   cuni 4856   class class class wbr 5089  ccnv 5613  supcsup 9324  infcinf 9325  cr 11005   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-sup 9326  df-inf 9327  df-xr 11150  df-le 11152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator