| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infglb | Structured version Visualization version GIF version | ||
| Description: An infimum is the greatest lower bound. See also infcl 9510 and inflb 9511. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Ref | Expression |
|---|---|
| infglb | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9465 | . . . . 5 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | 1 | breq1i 5130 | . . . 4 ⊢ (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
| 4 | infcl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 5 | cnvso 6288 | . . . . . . . 8 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 7 | infcl.2 | . . . . . . . 8 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 8 | 4, 7 | infcllem 9509 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 9 | 6, 8 | supcl 9480 | . . . . . 6 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 11 | brcnvg 5870 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶)) | |
| 12 | 11 | bicomd 223 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 13 | 3, 10, 12 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 14 | 2, 13 | bitrid 283 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 15 | 6, 8 | suplub 9482 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅)) → ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
| 16 | 15 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) → ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
| 17 | vex 3467 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 18 | brcnvg 5870 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) | |
| 19 | 3, 17, 18 | sylancl 586 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) |
| 20 | 19 | rexbidv 3166 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 21 | 16, 20 | sylibd 239 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 22 | 14, 21 | sylbid 240 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 23 | 22 | expimpd 453 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 Or wor 5571 ◡ccnv 5664 supcsup 9462 infcinf 9463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-po 5572 df-so 5573 df-cnv 5673 df-iota 6494 df-riota 7370 df-sup 9464 df-inf 9465 |
| This theorem is referenced by: infnlb 9514 omssubaddlem 34260 omssubadd 34261 gtinf 36279 infxrunb2 45336 |
| Copyright terms: Public domain | W3C validator |