![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infglb | Structured version Visualization version GIF version |
Description: An infimum is the greatest lower bound. See also infcl 9489 and inflb 9490. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infglb | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9444 | . . . . 5 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | 1 | breq1i 5155 | . . . 4 ⊢ (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶) |
3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
4 | infcl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
5 | cnvso 6287 | . . . . . . . 8 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
6 | 4, 5 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
7 | infcl.2 | . . . . . . . 8 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
8 | 4, 7 | infcllem 9488 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
9 | 6, 8 | supcl 9459 | . . . . . 6 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
11 | brcnvg 5879 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶)) | |
12 | 11 | bicomd 222 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
13 | 3, 10, 12 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
14 | 2, 13 | bitrid 283 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
15 | 6, 8 | suplub 9461 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅)) → ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
16 | 15 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) → ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
17 | vex 3477 | . . . . . 6 ⊢ 𝑧 ∈ V | |
18 | brcnvg 5879 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) | |
19 | 3, 17, 18 | sylancl 585 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) |
20 | 19 | rexbidv 3177 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
21 | 16, 20 | sylibd 238 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
22 | 14, 21 | sylbid 239 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
23 | 22 | expimpd 453 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 Vcvv 3473 class class class wbr 5148 Or wor 5587 ◡ccnv 5675 supcsup 9441 infcinf 9442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-po 5588 df-so 5589 df-cnv 5684 df-iota 6495 df-riota 7368 df-sup 9443 df-inf 9444 |
This theorem is referenced by: infnlb 9493 omssubaddlem 33762 omssubadd 33763 gtinf 35668 infxrunb2 44537 |
Copyright terms: Public domain | W3C validator |