MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infglb Structured version   Visualization version   GIF version

Theorem infglb 9485
Description: An infimum is the greatest lower bound. See also infcl 9483 and inflb 9484. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infglb (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infglb
StepHypRef Expression
1 df-inf 9438 . . . . 5 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
21breq1i 5156 . . . 4 (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
3 simpr 486 . . . . 5 ((𝜑𝐶𝐴) → 𝐶𝐴)
4 infcl.1 . . . . . . . 8 (𝜑𝑅 Or 𝐴)
5 cnvso 6288 . . . . . . . 8 (𝑅 Or 𝐴𝑅 Or 𝐴)
64, 5sylib 217 . . . . . . 7 (𝜑𝑅 Or 𝐴)
7 infcl.2 . . . . . . . 8 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
84, 7infcllem 9482 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
96, 8supcl 9453 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
109adantr 482 . . . . 5 ((𝜑𝐶𝐴) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
11 brcnvg 5880 . . . . . 6 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1211bicomd 222 . . . . 5 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
133, 10, 12syl2anc 585 . . . 4 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
142, 13bitrid 283 . . 3 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
156, 8suplub 9455 . . . . 5 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
1615expdimp 454 . . . 4 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
17 vex 3479 . . . . . 6 𝑧 ∈ V
18 brcnvg 5880 . . . . . 6 ((𝐶𝐴𝑧 ∈ V) → (𝐶𝑅𝑧𝑧𝑅𝐶))
193, 17, 18sylancl 587 . . . . 5 ((𝜑𝐶𝐴) → (𝐶𝑅𝑧𝑧𝑅𝐶))
2019rexbidv 3179 . . . 4 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
2116, 20sylibd 238 . . 3 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑧𝑅𝐶))
2214, 21sylbid 239 . 2 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧𝐵 𝑧𝑅𝐶))
2322expimpd 455 1 (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wrex 3071  Vcvv 3475   class class class wbr 5149   Or wor 5588  ccnv 5676  supcsup 9435  infcinf 9436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-po 5589  df-so 5590  df-cnv 5685  df-iota 6496  df-riota 7365  df-sup 9437  df-inf 9438
This theorem is referenced by:  infnlb  9487  omssubaddlem  33298  omssubadd  33299  gtinf  35204  infxrunb2  44078
  Copyright terms: Public domain W3C validator