MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infglb Structured version   Visualization version   GIF version

Theorem infglb 9491
Description: An infimum is the greatest lower bound. See also infcl 9489 and inflb 9490. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infglb (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infglb
StepHypRef Expression
1 df-inf 9444 . . . . 5 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
21breq1i 5155 . . . 4 (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
3 simpr 484 . . . . 5 ((𝜑𝐶𝐴) → 𝐶𝐴)
4 infcl.1 . . . . . . . 8 (𝜑𝑅 Or 𝐴)
5 cnvso 6287 . . . . . . . 8 (𝑅 Or 𝐴𝑅 Or 𝐴)
64, 5sylib 217 . . . . . . 7 (𝜑𝑅 Or 𝐴)
7 infcl.2 . . . . . . . 8 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
84, 7infcllem 9488 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
96, 8supcl 9459 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
109adantr 480 . . . . 5 ((𝜑𝐶𝐴) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
11 brcnvg 5879 . . . . . 6 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1211bicomd 222 . . . . 5 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
133, 10, 12syl2anc 583 . . . 4 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
142, 13bitrid 283 . . 3 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
156, 8suplub 9461 . . . . 5 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
1615expdimp 452 . . . 4 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
17 vex 3477 . . . . . 6 𝑧 ∈ V
18 brcnvg 5879 . . . . . 6 ((𝐶𝐴𝑧 ∈ V) → (𝐶𝑅𝑧𝑧𝑅𝐶))
193, 17, 18sylancl 585 . . . . 5 ((𝜑𝐶𝐴) → (𝐶𝑅𝑧𝑧𝑅𝐶))
2019rexbidv 3177 . . . 4 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
2116, 20sylibd 238 . . 3 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑧𝑅𝐶))
2214, 21sylbid 239 . 2 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧𝐵 𝑧𝑅𝐶))
2322expimpd 453 1 (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2105  wral 3060  wrex 3069  Vcvv 3473   class class class wbr 5148   Or wor 5587  ccnv 5675  supcsup 9441  infcinf 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-po 5588  df-so 5589  df-cnv 5684  df-iota 6495  df-riota 7368  df-sup 9443  df-inf 9444
This theorem is referenced by:  infnlb  9493  omssubaddlem  33762  omssubadd  33763  gtinf  35668  infxrunb2  44537
  Copyright terms: Public domain W3C validator