| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infcl | Structured version Visualization version GIF version | ||
| Description: An infimum belongs to its base class (closure law). See also inflb 9441 and infglb 9442. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Ref | Expression |
|---|---|
| infcl | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9394 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | infcl.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 3 | cnvso 6261 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 5 | infcl.2 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 6 | 2, 5 | infcllem 9439 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 7 | 4, 6 | supcl 9409 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 8 | 1, 7 | eqeltrid 2832 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 Or wor 5545 ◡ccnv 5637 supcsup 9391 infcinf 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-cnv 5646 df-iota 6464 df-riota 7344 df-sup 9393 df-inf 9394 |
| This theorem is referenced by: infssd 9445 infrecl 12165 infxrcl 13294 xrge0infssd 32684 infxrge0lb 32687 infxrge0gelb 32689 omsf 34287 wzel 35812 wsuccl 35815 |
| Copyright terms: Public domain | W3C validator |