MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcl Structured version   Visualization version   GIF version

Theorem infcl 9479
Description: An infimum belongs to its base class (closure law). See also inflb 9480 and infglb 9481. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infcl (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infcl
StepHypRef Expression
1 df-inf 9434 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infcl.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 6284 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 217 . . 3 (𝜑𝑅 Or 𝐴)
5 infcl.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
62, 5infcllem 9478 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supcl 9449 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
81, 7eqeltrid 2837 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wral 3061  wrex 3070   class class class wbr 5147   Or wor 5586  ccnv 5674  supcsup 9431  infcinf 9432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-po 5587  df-so 5588  df-cnv 5683  df-iota 6492  df-riota 7361  df-sup 9433  df-inf 9434
This theorem is referenced by:  infrecl  12192  infxrcl  13308  infssd  31922  xrge0infssd  31961  infxrge0lb  31964  infxrge0gelb  31966  omsf  33283  wzel  34784  wsuccl  34787
  Copyright terms: Public domain W3C validator