MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcl Structured version   Visualization version   GIF version

Theorem infcl 9416
Description: An infimum belongs to its base class (closure law). See also inflb 9417 and infglb 9418. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infcl (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infcl
StepHypRef Expression
1 df-inf 9370 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infcl.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 6249 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
5 infcl.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
62, 5infcllem 9415 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supcl 9385 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
81, 7eqeltrid 2832 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102   Or wor 5538  ccnv 5630  supcsup 9367  infcinf 9368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-po 5539  df-so 5540  df-cnv 5639  df-iota 6452  df-riota 7326  df-sup 9369  df-inf 9370
This theorem is referenced by:  infssd  9421  infrecl  12141  infxrcl  13270  xrge0infssd  32657  infxrge0lb  32660  infxrge0gelb  32662  omsf  34260  wzel  35785  wsuccl  35788
  Copyright terms: Public domain W3C validator