MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcl Structured version   Visualization version   GIF version

Theorem infcl 8952
Description: An infimum belongs to its base class (closure law). See also inflb 8953 and infglb 8954. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infcl (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infcl
StepHypRef Expression
1 df-inf 8907 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infcl.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 6139 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 220 . . 3 (𝜑𝑅 Or 𝐴)
5 infcl.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
62, 5infcllem 8951 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supcl 8922 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
81, 7eqeltrid 2917 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066   Or wor 5473  ccnv 5554  supcsup 8904  infcinf 8905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-po 5474  df-so 5475  df-cnv 5563  df-iota 6314  df-riota 7114  df-sup 8906  df-inf 8907
This theorem is referenced by:  infrecl  11623  infxrcl  12727  infssd  30446  xrge0infssd  30485  infxrge0lb  30488  infxrge0gelb  30490  omsf  31554  wzel  33111  wsuccl  33114
  Copyright terms: Public domain W3C validator