| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inflb | Structured version Visualization version GIF version | ||
| Description: An infimum is a lower bound. See also infcl 9501 and infglb 9503. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Ref | Expression |
|---|---|
| inflb | ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | cnvso 6277 | . . . . . 6 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 4 | infcl.2 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 5 | 1, 4 | infcllem 9500 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 6 | 3, 5 | supub 9471 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 7 | 6 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → ¬ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶) |
| 8 | df-inf 9455 | . . . . . 6 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅)) |
| 10 | 9 | breq2d 5131 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 11 | 3, 5 | supcl 9470 | . . . . 5 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 12 | brcnvg 5859 | . . . . . 6 ⊢ ((sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶 ↔ 𝐶𝑅sup(𝐵, 𝐴, ◡𝑅))) | |
| 13 | 12 | bicomd 223 | . . . . 5 ⊢ ((sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 14 | 11, 13 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 15 | 10, 14 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
| 16 | 7, 15 | mtbird 325 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)) |
| 17 | 16 | ex 412 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 Or wor 5560 ◡ccnv 5653 supcsup 9452 infcinf 9453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-po 5561 df-so 5562 df-cnv 5662 df-iota 6484 df-riota 7362 df-sup 9454 df-inf 9455 |
| This theorem is referenced by: infssd 9506 infrelb 12227 infxrlb 13351 infxrge0lb 32741 omssubadd 34332 ballotlemimin 34538 ballotlemfrcn0 34562 wsuclb 35846 |
| Copyright terms: Public domain | W3C validator |