![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inflb | Structured version Visualization version GIF version |
Description: An infimum is a lower bound. See also infcl 9557 and infglb 9559. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
inflb | ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcl.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | cnvso 6319 | . . . . . 6 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
4 | infcl.2 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
5 | 1, 4 | infcllem 9556 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
6 | 3, 5 | supub 9528 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
7 | 6 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → ¬ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶) |
8 | df-inf 9512 | . . . . . 6 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅)) |
10 | 9 | breq2d 5178 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, ◡𝑅))) |
11 | 3, 5 | supcl 9527 | . . . . 5 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
12 | brcnvg 5904 | . . . . . 6 ⊢ ((sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶 ↔ 𝐶𝑅sup(𝐵, 𝐴, ◡𝑅))) | |
13 | 12 | bicomd 223 | . . . . 5 ⊢ ((sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
14 | 11, 13 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
15 | 10, 14 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)◡𝑅𝐶)) |
16 | 7, 15 | mtbird 325 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)) |
17 | 16 | ex 412 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 Or wor 5606 ◡ccnv 5699 supcsup 9509 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-cnv 5708 df-iota 6525 df-riota 7404 df-sup 9511 df-inf 9512 |
This theorem is referenced by: infrelb 12280 infxrlb 13396 infssd 32724 infxrge0lb 32771 omssubadd 34265 ballotlemimin 34470 ballotlemfrcn0 34494 wsuclb 35792 |
Copyright terms: Public domain | W3C validator |