MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq1 Structured version   Visualization version   GIF version

Theorem infeq1 9428
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq1 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))

Proof of Theorem infeq1
StepHypRef Expression
1 supeq1 9396 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
2 df-inf 9394 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
3 df-inf 9394 . 2 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
41, 2, 33eqtr4g 2789 1 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5637  supcsup 9391  infcinf 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-ss 3931  df-uni 4872  df-sup 9393  df-inf 9394
This theorem is referenced by:  infeq1d  9429  infeq1i  9430  ramcl2lem  16980  odfval  19462  odval  19464  submod  19499  ioorval  25475  uniioombllem6  25489  infleinf  45368  infxrpnf  45442  prproropf1olem2  47505  prproropf1olem3  47506  prproropf1olem4  47507  prproropf1o  47508  prproropreud  47510
  Copyright terms: Public domain W3C validator