| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1 | ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1 9354 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, ◡𝑅) = sup(𝐶, 𝐴, ◡𝑅)) | |
| 2 | df-inf 9352 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 3 | df-inf 9352 | . 2 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5622 supcsup 9349 infcinf 9350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-ss 3922 df-uni 4862 df-sup 9351 df-inf 9352 |
| This theorem is referenced by: infeq1d 9387 infeq1i 9388 ramcl2lem 16940 odfval 19430 odval 19432 submod 19467 ioorval 25492 uniioombllem6 25506 infleinf 45371 infxrpnf 45445 prproropf1olem2 47508 prproropf1olem3 47509 prproropf1olem4 47510 prproropf1o 47511 prproropreud 47513 |
| Copyright terms: Public domain | W3C validator |