| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1 | ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1 9467 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, ◡𝑅) = sup(𝐶, 𝐴, ◡𝑅)) | |
| 2 | df-inf 9465 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 3 | df-inf 9465 | . 2 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
| 4 | 1, 2, 3 | 3eqtr4g 2794 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5664 supcsup 9462 infcinf 9463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-ss 3948 df-uni 4888 df-sup 9464 df-inf 9465 |
| This theorem is referenced by: infeq1d 9499 infeq1i 9500 ramcl2lem 17030 odfval 19519 odval 19521 submod 19556 ioorval 25546 uniioombllem6 25560 infleinf 45355 infxrpnf 45429 prproropf1olem2 47464 prproropf1olem3 47465 prproropf1olem4 47466 prproropf1o 47467 prproropreud 47469 |
| Copyright terms: Public domain | W3C validator |