MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq1 Structured version   Visualization version   GIF version

Theorem infeq1 9386
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq1 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))

Proof of Theorem infeq1
StepHypRef Expression
1 supeq1 9354 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
2 df-inf 9352 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
3 df-inf 9352 . 2 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
41, 2, 33eqtr4g 2789 1 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5622  supcsup 9349  infcinf 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-ss 3922  df-uni 4862  df-sup 9351  df-inf 9352
This theorem is referenced by:  infeq1d  9387  infeq1i  9388  ramcl2lem  16940  odfval  19430  odval  19432  submod  19467  ioorval  25492  uniioombllem6  25506  infleinf  45371  infxrpnf  45445  prproropf1olem2  47508  prproropf1olem3  47509  prproropf1olem4  47510  prproropf1o  47511  prproropreud  47513
  Copyright terms: Public domain W3C validator