![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1 | ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1 9440 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, ◡𝑅) = sup(𝐶, 𝐴, ◡𝑅)) | |
2 | df-inf 9438 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
3 | df-inf 9438 | . 2 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ◡ccnv 5676 supcsup 9435 infcinf 9436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-sup 9437 df-inf 9438 |
This theorem is referenced by: infeq1d 9472 infeq1i 9473 ramcl2lem 16942 odfval 19400 odval 19402 submod 19437 ioorval 25091 uniioombllem6 25105 infleinf 44130 infxrpnf 44204 prproropf1olem2 46220 prproropf1olem3 46221 prproropf1olem4 46222 prproropf1o 46223 prproropreud 46225 |
Copyright terms: Public domain | W3C validator |