Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1 | ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1 9134 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, ◡𝑅) = sup(𝐶, 𝐴, ◡𝑅)) | |
2 | df-inf 9132 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
3 | df-inf 9132 | . 2 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5579 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-sup 9131 df-inf 9132 |
This theorem is referenced by: infeq1d 9166 infeq1i 9167 ramcl2lem 16638 odfval 19055 odval 19057 submod 19089 ioorval 24643 uniioombllem6 24657 infleinf 42801 infxrpnf 42876 prproropf1olem2 44844 prproropf1olem3 44845 prproropf1olem4 44846 prproropf1o 44847 prproropreud 44849 |
Copyright terms: Public domain | W3C validator |