![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1 | ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1 9514 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, ◡𝑅) = sup(𝐶, 𝐴, ◡𝑅)) | |
2 | df-inf 9512 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
3 | df-inf 9512 | . 2 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ◡ccnv 5699 supcsup 9509 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-sup 9511 df-inf 9512 |
This theorem is referenced by: infeq1d 9546 infeq1i 9547 ramcl2lem 17056 odfval 19574 odval 19576 submod 19611 ioorval 25628 uniioombllem6 25642 infleinf 45287 infxrpnf 45361 prproropf1olem2 47378 prproropf1olem3 47379 prproropf1olem4 47380 prproropf1o 47381 prproropreud 47383 |
Copyright terms: Public domain | W3C validator |