MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq1 Structured version   Visualization version   GIF version

Theorem infeq1 9165
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq1 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))

Proof of Theorem infeq1
StepHypRef Expression
1 supeq1 9134 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
2 df-inf 9132 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
3 df-inf 9132 . 2 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
41, 2, 33eqtr4g 2804 1 (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccnv 5579  supcsup 9129  infcinf 9130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-sup 9131  df-inf 9132
This theorem is referenced by:  infeq1d  9166  infeq1i  9167  ramcl2lem  16638  odfval  19055  odval  19057  submod  19089  ioorval  24643  uniioombllem6  24657  infleinf  42801  infxrpnf  42876  prproropf1olem2  44844  prproropf1olem3  44845  prproropf1olem4  44846  prproropf1o  44847  prproropreud  44849
  Copyright terms: Public domain W3C validator