| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infglbb | Structured version Visualization version GIF version | ||
| Description: Bidirectional form of infglb 9503. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| infglbb.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| infglbb | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9455 | . . 3 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | 1 | breq1i 5126 | . 2 ⊢ (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
| 4 | infcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 5 | cnvso 6277 | . . . . . . 7 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
| 7 | infcl.2 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 8 | 4, 7 | infcllem 9500 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 9 | 6, 8 | supcl 9470 | . . . . 5 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
| 11 | brcnvg 5859 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶)) | |
| 12 | 11 | bicomd 223 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 13 | 3, 10, 12 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
| 14 | infglbb.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 15 | 6, 8, 14 | suplub2 9473 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
| 16 | vex 3463 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 17 | brcnvg 5859 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) | |
| 18 | 3, 16, 17 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) |
| 19 | 18 | rexbidv 3164 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 20 | 13, 15, 19 | 3bitrd 305 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 21 | 2, 20 | bitrid 283 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 Or wor 5560 ◡ccnv 5653 supcsup 9452 infcinf 9453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-po 5561 df-so 5562 df-cnv 5662 df-iota 6484 df-riota 7362 df-sup 9454 df-inf 9455 |
| This theorem is referenced by: infregelb 12226 infxrgelb 13352 infxrge0glb 32742 infxrglb 45367 infrglb 45619 |
| Copyright terms: Public domain | W3C validator |