MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infglbb Structured version   Visualization version   GIF version

Theorem infglbb 9028
Description: Bidirectional form of infglb 9027. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
infglbb.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
infglbb ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infglbb
StepHypRef Expression
1 df-inf 8980 . . 3 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
21breq1i 5037 . 2 (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
3 simpr 488 . . . 4 ((𝜑𝐶𝐴) → 𝐶𝐴)
4 infcl.1 . . . . . . 7 (𝜑𝑅 Or 𝐴)
5 cnvso 6120 . . . . . . 7 (𝑅 Or 𝐴𝑅 Or 𝐴)
64, 5sylib 221 . . . . . 6 (𝜑𝑅 Or 𝐴)
7 infcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
84, 7infcllem 9024 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
96, 8supcl 8995 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
109adantr 484 . . . 4 ((𝜑𝐶𝐴) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
11 brcnvg 5722 . . . . 5 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1211bicomd 226 . . . 4 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
133, 10, 12syl2anc 587 . . 3 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
14 infglbb.3 . . . 4 (𝜑𝐵𝐴)
156, 8, 14suplub2 8998 . . 3 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
16 vex 3402 . . . . 5 𝑧 ∈ V
17 brcnvg 5722 . . . . 5 ((𝐶𝐴𝑧 ∈ V) → (𝐶𝑅𝑧𝑧𝑅𝐶))
183, 16, 17sylancl 589 . . . 4 ((𝜑𝐶𝐴) → (𝐶𝑅𝑧𝑧𝑅𝐶))
1918rexbidv 3207 . . 3 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
2013, 15, 193bitrd 308 . 2 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
212, 20syl5bb 286 1 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2114  wral 3053  wrex 3054  Vcvv 3398  wss 3843   class class class wbr 5030   Or wor 5441  ccnv 5524  supcsup 8977  infcinf 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-po 5442  df-so 5443  df-cnv 5533  df-iota 6297  df-riota 7127  df-sup 8979  df-inf 8980
This theorem is referenced by:  infregelb  11702  infxrgelb  12811  infxrge0glb  30663  infxrglb  42417  infrglb  42673
  Copyright terms: Public domain W3C validator