Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infglbb | Structured version Visualization version GIF version |
Description: Bidirectional form of infglb 9179. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
infglbb.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
infglbb | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9132 | . . 3 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | 1 | breq1i 5077 | . 2 ⊢ (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
4 | infcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
5 | cnvso 6180 | . . . . . . 7 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
7 | infcl.2 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
8 | 4, 7 | infcllem 9176 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
9 | 6, 8 | supcl 9147 | . . . . 5 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
11 | brcnvg 5777 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶)) | |
12 | 11 | bicomd 222 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
13 | 3, 10, 12 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
14 | infglbb.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
15 | 6, 8, 14 | suplub2 9150 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
16 | vex 3426 | . . . . 5 ⊢ 𝑧 ∈ V | |
17 | brcnvg 5777 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) | |
18 | 3, 16, 17 | sylancl 585 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) |
19 | 18 | rexbidv 3225 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
20 | 13, 15, 19 | 3bitrd 304 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
21 | 2, 20 | syl5bb 282 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 ◡ccnv 5579 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-cnv 5588 df-iota 6376 df-riota 7212 df-sup 9131 df-inf 9132 |
This theorem is referenced by: infregelb 11889 infxrgelb 12998 infxrge0glb 30990 infxrglb 42769 infrglb 43021 |
Copyright terms: Public domain | W3C validator |