![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infglbb | Structured version Visualization version GIF version |
Description: Bidirectional form of infglb 8671. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
infglbb.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
infglbb | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 8624 | . . 3 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | 1 | breq1i 4882 | . 2 ⊢ (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶) |
3 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
4 | infcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
5 | cnvso 5919 | . . . . . . 7 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
6 | 4, 5 | sylib 210 | . . . . . 6 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
7 | infcl.2 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
8 | 4, 7 | infcllem 8668 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
9 | 6, 8 | supcl 8639 | . . . . 5 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
10 | 9 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) |
11 | brcnvg 5538 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶)) | |
12 | 11 | bicomd 215 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
13 | 3, 10, 12 | syl2anc 579 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ 𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅))) |
14 | infglbb.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
15 | 6, 8, 14 | suplub2 8642 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅sup(𝐵, 𝐴, ◡𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧)) |
16 | vex 3417 | . . . . 5 ⊢ 𝑧 ∈ V | |
17 | brcnvg 5538 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) | |
18 | 3, 16, 17 | sylancl 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶◡𝑅𝑧 ↔ 𝑧𝑅𝐶)) |
19 | 18 | rexbidv 3262 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑧 ∈ 𝐵 𝐶◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
20 | 13, 15, 19 | 3bitrd 297 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (sup(𝐵, 𝐴, ◡𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
21 | 2, 20 | syl5bb 275 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 Vcvv 3414 ⊆ wss 3798 class class class wbr 4875 Or wor 5264 ◡ccnv 5345 supcsup 8621 infcinf 8622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-po 5265 df-so 5266 df-cnv 5354 df-iota 6090 df-riota 6871 df-sup 8623 df-inf 8624 |
This theorem is referenced by: infregelb 11344 infxrgelb 12460 infxrge0glb 30073 infxrglb 40351 infrglb 40615 |
Copyright terms: Public domain | W3C validator |