Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infiso | Structured version Visualization version GIF version |
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infiso.1 | ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
infiso.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
infiso.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infiso.4 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Ref | Expression |
---|---|
infiso | ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infiso.1 | . . . 4 ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | isocnv2 7182 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝜑 → 𝐹 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
4 | infiso.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
5 | infiso.4 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
6 | infiso.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
7 | 5, 6 | infcllem 9176 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦◡𝑅𝑧))) |
8 | cnvso 6180 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
9 | 5, 8 | sylib 217 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
10 | 3, 4, 7, 9 | supiso 9164 | . 2 ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅))) |
11 | df-inf 9132 | . 2 ⊢ inf((𝐹 “ 𝐶), 𝐵, 𝑆) = sup((𝐹 “ 𝐶), 𝐵, ◡𝑆) | |
12 | df-inf 9132 | . . 3 ⊢ inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, ◡𝑅) | |
13 | 12 | fveq2i 6759 | . 2 ⊢ (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, ◡𝑅)) |
14 | 10, 11, 13 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 Isom wiso 6419 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-sup 9131 df-inf 9132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |