MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infiso Structured version   Visualization version   GIF version

Theorem infiso 8702
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
infiso.2 (𝜑𝐶𝐴)
infiso.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
infiso.4 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infiso (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infiso
StepHypRef Expression
1 infiso.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv2 6853 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
31, 2sylib 210 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
4 infiso.2 . . 3 (𝜑𝐶𝐴)
5 infiso.4 . . . 4 (𝜑𝑅 Or 𝐴)
6 infiso.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
75, 6infcllem 8681 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
8 cnvso 5928 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
95, 8sylib 210 . . 3 (𝜑𝑅 Or 𝐴)
103, 4, 7, 9supiso 8669 . 2 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
11 df-inf 8637 . 2 inf((𝐹𝐶), 𝐵, 𝑆) = sup((𝐹𝐶), 𝐵, 𝑆)
12 df-inf 8637 . . 3 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
1312fveq2i 6449 . 2 (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, 𝑅))
1410, 11, 133eqtr4g 2839 1 (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wral 3090  wrex 3091  wss 3792   class class class wbr 4886   Or wor 5273  ccnv 5354  cima 5358  cfv 6135   Isom wiso 6136  supcsup 8634  infcinf 8635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-sup 8636  df-inf 8637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator