MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infiso Structured version   Visualization version   GIF version

Theorem infiso 9546
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
infiso.2 (𝜑𝐶𝐴)
infiso.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
infiso.4 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infiso (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infiso
StepHypRef Expression
1 infiso.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv2 7351 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
31, 2sylib 218 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
4 infiso.2 . . 3 (𝜑𝐶𝐴)
5 infiso.4 . . . 4 (𝜑𝑅 Or 𝐴)
6 infiso.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
75, 6infcllem 9525 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
8 cnvso 6310 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
95, 8sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
103, 4, 7, 9supiso 9513 . 2 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
11 df-inf 9481 . 2 inf((𝐹𝐶), 𝐵, 𝑆) = sup((𝐹𝐶), 𝐵, 𝑆)
12 df-inf 9481 . . 3 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
1312fveq2i 6910 . 2 (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, 𝑅))
1410, 11, 133eqtr4g 2800 1 (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wral 3059  wrex 3068  wss 3963   class class class wbr 5148   Or wor 5596  ccnv 5688  cima 5692  cfv 6563   Isom wiso 6564  supcsup 9478  infcinf 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-sup 9480  df-inf 9481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator