MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infiso Structured version   Visualization version   GIF version

Theorem infiso 9577
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
infiso.2 (𝜑𝐶𝐴)
infiso.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
infiso.4 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infiso (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infiso
StepHypRef Expression
1 infiso.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv2 7367 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
31, 2sylib 218 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
4 infiso.2 . . 3 (𝜑𝐶𝐴)
5 infiso.4 . . . 4 (𝜑𝑅 Or 𝐴)
6 infiso.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
75, 6infcllem 9556 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
8 cnvso 6319 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
95, 8sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
103, 4, 7, 9supiso 9544 . 2 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
11 df-inf 9512 . 2 inf((𝐹𝐶), 𝐵, 𝑆) = sup((𝐹𝐶), 𝐵, 𝑆)
12 df-inf 9512 . . 3 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
1312fveq2i 6923 . 2 (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, 𝑅))
1410, 11, 133eqtr4g 2805 1 (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wral 3067  wrex 3076  wss 3976   class class class wbr 5166   Or wor 5606  ccnv 5699  cima 5703  cfv 6573   Isom wiso 6574  supcsup 9509  infcinf 9510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-sup 9511  df-inf 9512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator