MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infiso Structured version   Visualization version   GIF version

Theorem infiso 9400
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
infiso.2 (𝜑𝐶𝐴)
infiso.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
infiso.4 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infiso (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infiso
StepHypRef Expression
1 infiso.1 . . . 4 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv2 7268 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
31, 2sylib 218 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆(𝐴, 𝐵))
4 infiso.2 . . 3 (𝜑𝐶𝐴)
5 infiso.4 . . . 4 (𝜑𝑅 Or 𝐴)
6 infiso.3 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))
75, 6infcllem 9378 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
8 cnvso 6236 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
95, 8sylib 218 . . 3 (𝜑𝑅 Or 𝐴)
103, 4, 7, 9supiso 9366 . 2 (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
11 df-inf 9333 . 2 inf((𝐹𝐶), 𝐵, 𝑆) = sup((𝐹𝐶), 𝐵, 𝑆)
12 df-inf 9333 . . 3 inf(𝐶, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
1312fveq2i 6825 . 2 (𝐹‘inf(𝐶, 𝐴, 𝑅)) = (𝐹‘sup(𝐶, 𝐴, 𝑅))
1410, 11, 133eqtr4g 2789 1 (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wral 3044  wrex 3053  wss 3903   class class class wbr 5092   Or wor 5526  ccnv 5618  cima 5622  cfv 6482   Isom wiso 6483  supcsup 9330  infcinf 9331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-sup 9332  df-inf 9333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator