![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infiso | Structured version Visualization version GIF version |
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infiso.1 | β’ (π β πΉ Isom π , π (π΄, π΅)) |
infiso.2 | β’ (π β πΆ β π΄) |
infiso.3 | β’ (π β βπ₯ β π΄ (βπ¦ β πΆ Β¬ π¦π π₯ β§ βπ¦ β π΄ (π₯π π¦ β βπ§ β πΆ π§π π¦))) |
infiso.4 | β’ (π β π Or π΄) |
Ref | Expression |
---|---|
infiso | β’ (π β inf((πΉ β πΆ), π΅, π) = (πΉβinf(πΆ, π΄, π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infiso.1 | . . . 4 β’ (π β πΉ Isom π , π (π΄, π΅)) | |
2 | isocnv2 7328 | . . . 4 β’ (πΉ Isom π , π (π΄, π΅) β πΉ Isom β‘π , β‘π(π΄, π΅)) | |
3 | 1, 2 | sylib 217 | . . 3 β’ (π β πΉ Isom β‘π , β‘π(π΄, π΅)) |
4 | infiso.2 | . . 3 β’ (π β πΆ β π΄) | |
5 | infiso.4 | . . . 4 β’ (π β π Or π΄) | |
6 | infiso.3 | . . . 4 β’ (π β βπ₯ β π΄ (βπ¦ β πΆ Β¬ π¦π π₯ β§ βπ¦ β π΄ (π₯π π¦ β βπ§ β πΆ π§π π¦))) | |
7 | 5, 6 | infcllem 9482 | . . 3 β’ (π β βπ₯ β π΄ (βπ¦ β πΆ Β¬ π₯β‘π π¦ β§ βπ¦ β π΄ (π¦β‘π π₯ β βπ§ β πΆ π¦β‘π π§))) |
8 | cnvso 6288 | . . . 4 β’ (π Or π΄ β β‘π Or π΄) | |
9 | 5, 8 | sylib 217 | . . 3 β’ (π β β‘π Or π΄) |
10 | 3, 4, 7, 9 | supiso 9470 | . 2 β’ (π β sup((πΉ β πΆ), π΅, β‘π) = (πΉβsup(πΆ, π΄, β‘π ))) |
11 | df-inf 9438 | . 2 β’ inf((πΉ β πΆ), π΅, π) = sup((πΉ β πΆ), π΅, β‘π) | |
12 | df-inf 9438 | . . 3 β’ inf(πΆ, π΄, π ) = sup(πΆ, π΄, β‘π ) | |
13 | 12 | fveq2i 6895 | . 2 β’ (πΉβinf(πΆ, π΄, π )) = (πΉβsup(πΆ, π΄, β‘π )) |
14 | 10, 11, 13 | 3eqtr4g 2798 | 1 β’ (π β inf((πΉ β πΆ), π΅, π) = (πΉβinf(πΆ, π΄, π ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 βwral 3062 βwrex 3071 β wss 3949 class class class wbr 5149 Or wor 5588 β‘ccnv 5676 β cima 5680 βcfv 6544 Isom wiso 6545 supcsup 9435 infcinf 9436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-sup 9437 df-inf 9438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |