Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglb Structured version   Visualization version   GIF version

Theorem tosglb 32950
Description: Same theorem as toslub 32948, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tosglb (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))

Proof of Theorem tosglb
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosglb.b . . . . 5 𝐵 = (Base‘𝐾)
2 tosglb.l . . . . 5 < = (lt‘𝐾)
3 tosglb.1 . . . . 5 (𝜑𝐾 ∈ Toset)
4 tosglb.2 . . . . 5 (𝜑𝐴𝐵)
5 eqid 2735 . . . . 5 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5tosglblem 32949 . . . 4 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7407 . . 3 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2735 . . . 4 (glb‘𝐾) = (glb‘𝐾)
9 biid 261 . . . 4 ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)))
101, 5, 8, 9, 3, 4glbval 18427 . . 3 (𝜑 → ((glb‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))))
111, 5, 2tosso 18477 . . . . . . 7 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 267 . . . . . 6 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 494 . . . . 5 (𝐾 ∈ Toset → < Or 𝐵)
14 cnvso 6310 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1513, 14sylib 218 . . . 4 (𝐾 ∈ Toset → < Or 𝐵)
16 id 22 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1716supval2 9493 . . . 4 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
183, 15, 173syl 18 . . 3 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
197, 10, 183eqtr4d 2785 . 2 (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
20 df-inf 9481 . . . 4 inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, < )
2120eqcomi 2744 . . 3 sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < )
2221a1i 11 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < ))
2319, 22eqtrd 2775 1 (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963   class class class wbr 5148   I cid 5582   Or wor 5596  ccnv 5688  cres 5691  cfv 6563  crio 7387  supcsup 9478  infcinf 9479  Basecbs 17245  lecple 17305  ltcplt 18366  glbcglb 18368  Tosetctos 18474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-sup 9480  df-inf 9481  df-proset 18352  df-poset 18371  df-plt 18388  df-glb 18405  df-toset 18475
This theorem is referenced by:  xrsp0  32997
  Copyright terms: Public domain W3C validator