| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tosglb | Structured version Visualization version GIF version | ||
| Description: Same theorem as toslub 32899, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| Ref | Expression |
|---|---|
| tosglb.b | ⊢ 𝐵 = (Base‘𝐾) |
| tosglb.l | ⊢ < = (lt‘𝐾) |
| tosglb.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
| tosglb.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| tosglb | ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tosglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | tosglb.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | tosglb.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
| 4 | tosglb.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | tosglblem 32900 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 7 | 6 | riotabidva 7363 | . . 3 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 8 | eqid 2729 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 9 | biid 261 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) | |
| 10 | 1, 5, 8, 9, 3, 4 | glbval 18328 | . . 3 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)))) |
| 11 | 1, 5, 2 | tosso 18378 | . . . . . . 7 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
| 12 | 11 | ibi 267 | . . . . . 6 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
| 13 | 12 | simpld 494 | . . . . 5 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
| 14 | cnvso 6261 | . . . . 5 ⊢ ( < Or 𝐵 ↔ ◡ < Or 𝐵) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝐾 ∈ Toset → ◡ < Or 𝐵) |
| 16 | id 22 | . . . . 5 ⊢ (◡ < Or 𝐵 → ◡ < Or 𝐵) | |
| 17 | 16 | supval2 9406 | . . . 4 ⊢ (◡ < Or 𝐵 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 18 | 3, 15, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 19 | 7, 10, 18 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, ◡ < )) |
| 20 | df-inf 9394 | . . . 4 ⊢ inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, ◡ < ) | |
| 21 | 20 | eqcomi 2738 | . . 3 ⊢ sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < ) |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < )) |
| 23 | 19, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 I cid 5532 Or wor 5545 ◡ccnv 5637 ↾ cres 5640 ‘cfv 6511 ℩crio 7343 supcsup 9391 infcinf 9392 Basecbs 17179 lecple 17227 ltcplt 18269 glbcglb 18271 Tosetctos 18375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-sup 9393 df-inf 9394 df-proset 18255 df-poset 18274 df-plt 18289 df-glb 18306 df-toset 18376 |
| This theorem is referenced by: xrsp0 32950 |
| Copyright terms: Public domain | W3C validator |