Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tosglb | Structured version Visualization version GIF version |
Description: Same theorem as toslub 31251, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
Ref | Expression |
---|---|
tosglb.b | ⊢ 𝐵 = (Base‘𝐾) |
tosglb.l | ⊢ < = (lt‘𝐾) |
tosglb.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
tosglb.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
tosglb | ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tosglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | tosglb.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | tosglb.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
4 | tosglb.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
5 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 1, 2, 3, 4, 5 | tosglblem 31252 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
7 | 6 | riotabidva 7252 | . . 3 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
8 | eqid 2738 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
9 | biid 260 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) | |
10 | 1, 5, 8, 9, 3, 4 | glbval 18087 | . . 3 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)))) |
11 | 1, 5, 2 | tosso 18137 | . . . . . . 7 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
12 | 11 | ibi 266 | . . . . . 6 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
13 | 12 | simpld 495 | . . . . 5 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
14 | cnvso 6191 | . . . . 5 ⊢ ( < Or 𝐵 ↔ ◡ < Or 𝐵) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝐾 ∈ Toset → ◡ < Or 𝐵) |
16 | id 22 | . . . . 5 ⊢ (◡ < Or 𝐵 → ◡ < Or 𝐵) | |
17 | 16 | supval2 9214 | . . . 4 ⊢ (◡ < Or 𝐵 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
18 | 3, 15, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
19 | 7, 10, 18 | 3eqtr4d 2788 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, ◡ < )) |
20 | df-inf 9202 | . . . 4 ⊢ inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, ◡ < ) | |
21 | 20 | eqcomi 2747 | . . 3 ⊢ sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < ) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < )) |
23 | 19, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 I cid 5488 Or wor 5502 ◡ccnv 5588 ↾ cres 5591 ‘cfv 6433 ℩crio 7231 supcsup 9199 infcinf 9200 Basecbs 16912 lecple 16969 ltcplt 18026 glbcglb 18028 Tosetctos 18134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-sup 9201 df-inf 9202 df-proset 18013 df-poset 18031 df-plt 18048 df-glb 18065 df-toset 18135 |
This theorem is referenced by: xrsp0 31290 |
Copyright terms: Public domain | W3C validator |