| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tosglb | Structured version Visualization version GIF version | ||
| Description: Same theorem as toslub 32949, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| Ref | Expression |
|---|---|
| tosglb.b | ⊢ 𝐵 = (Base‘𝐾) |
| tosglb.l | ⊢ < = (lt‘𝐾) |
| tosglb.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
| tosglb.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| tosglb | ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tosglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | tosglb.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | tosglb.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
| 4 | tosglb.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | tosglblem 32950 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 7 | 6 | riotabidva 7322 | . . 3 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 8 | eqid 2731 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 9 | biid 261 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) | |
| 10 | 1, 5, 8, 9, 3, 4 | glbval 18270 | . . 3 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)))) |
| 11 | 1, 5, 2 | tosso 18320 | . . . . . . 7 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
| 12 | 11 | ibi 267 | . . . . . 6 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
| 13 | 12 | simpld 494 | . . . . 5 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
| 14 | cnvso 6235 | . . . . 5 ⊢ ( < Or 𝐵 ↔ ◡ < Or 𝐵) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝐾 ∈ Toset → ◡ < Or 𝐵) |
| 16 | id 22 | . . . . 5 ⊢ (◡ < Or 𝐵 → ◡ < Or 𝐵) | |
| 17 | 16 | supval2 9339 | . . . 4 ⊢ (◡ < Or 𝐵 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 18 | 3, 15, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
| 19 | 7, 10, 18 | 3eqtr4d 2776 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, ◡ < )) |
| 20 | df-inf 9327 | . . . 4 ⊢ inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, ◡ < ) | |
| 21 | 20 | eqcomi 2740 | . . 3 ⊢ sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < ) |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < )) |
| 23 | 19, 22 | eqtrd 2766 | 1 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 I cid 5510 Or wor 5523 ◡ccnv 5615 ↾ cres 5618 ‘cfv 6481 ℩crio 7302 supcsup 9324 infcinf 9325 Basecbs 17117 lecple 17165 ltcplt 18211 glbcglb 18213 Tosetctos 18317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-sup 9326 df-inf 9327 df-proset 18197 df-poset 18216 df-plt 18231 df-glb 18248 df-toset 18318 |
| This theorem is referenced by: xrsp0 32988 |
| Copyright terms: Public domain | W3C validator |