Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglb Structured version   Visualization version   GIF version

Theorem tosglb 32960
Description: Same theorem as toslub 32958, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tosglb (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))

Proof of Theorem tosglb
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosglb.b . . . . 5 𝐵 = (Base‘𝐾)
2 tosglb.l . . . . 5 < = (lt‘𝐾)
3 tosglb.1 . . . . 5 (𝜑𝐾 ∈ Toset)
4 tosglb.2 . . . . 5 (𝜑𝐴𝐵)
5 eqid 2736 . . . . 5 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5tosglblem 32959 . . . 4 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7386 . . 3 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2736 . . . 4 (glb‘𝐾) = (glb‘𝐾)
9 biid 261 . . . 4 ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)))
101, 5, 8, 9, 3, 4glbval 18384 . . 3 (𝜑 → ((glb‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))))
111, 5, 2tosso 18434 . . . . . . 7 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 267 . . . . . 6 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 494 . . . . 5 (𝐾 ∈ Toset → < Or 𝐵)
14 cnvso 6282 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1513, 14sylib 218 . . . 4 (𝐾 ∈ Toset → < Or 𝐵)
16 id 22 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1716supval2 9472 . . . 4 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
183, 15, 173syl 18 . . 3 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
197, 10, 183eqtr4d 2781 . 2 (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
20 df-inf 9460 . . . 4 inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, < )
2120eqcomi 2745 . . 3 sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < )
2221a1i 11 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < ))
2319, 22eqtrd 2771 1 (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124   I cid 5552   Or wor 5565  ccnv 5658  cres 5661  cfv 6536  crio 7366  supcsup 9457  infcinf 9458  Basecbs 17233  lecple 17283  ltcplt 18325  glbcglb 18327  Tosetctos 18431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-sup 9459  df-inf 9460  df-proset 18311  df-poset 18330  df-plt 18345  df-glb 18362  df-toset 18432
This theorem is referenced by:  xrsp0  33009
  Copyright terms: Public domain W3C validator