Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tosglb | Structured version Visualization version GIF version |
Description: Same theorem as toslub 31153, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
Ref | Expression |
---|---|
tosglb.b | ⊢ 𝐵 = (Base‘𝐾) |
tosglb.l | ⊢ < = (lt‘𝐾) |
tosglb.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
tosglb.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
tosglb | ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tosglb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | tosglb.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | tosglb.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
4 | tosglb.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
5 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 1, 2, 3, 4, 5 | tosglblem 31154 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
7 | 6 | riotabidva 7232 | . . 3 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
8 | eqid 2738 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
9 | biid 260 | . . . 4 ⊢ ((∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎))) | |
10 | 1, 5, 8, 9, 3, 4 | glbval 18002 | . . 3 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐(le‘𝐾)𝑏 → 𝑐(le‘𝐾)𝑎)))) |
11 | 1, 5, 2 | tosso 18052 | . . . . . . 7 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
12 | 11 | ibi 266 | . . . . . 6 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
13 | 12 | simpld 494 | . . . . 5 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
14 | cnvso 6180 | . . . . 5 ⊢ ( < Or 𝐵 ↔ ◡ < Or 𝐵) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝐾 ∈ Toset → ◡ < Or 𝐵) |
16 | id 22 | . . . . 5 ⊢ (◡ < Or 𝐵 → ◡ < Or 𝐵) | |
17 | 16 | supval2 9144 | . . . 4 ⊢ (◡ < Or 𝐵 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
18 | 3, 15, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) |
19 | 7, 10, 18 | 3eqtr4d 2788 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, ◡ < )) |
20 | df-inf 9132 | . . . 4 ⊢ inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, ◡ < ) | |
21 | 20 | eqcomi 2747 | . . 3 ⊢ sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < ) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡ < ) = inf(𝐴, 𝐵, < )) |
23 | 19, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 I cid 5479 Or wor 5493 ◡ccnv 5579 ↾ cres 5582 ‘cfv 6418 ℩crio 7211 supcsup 9129 infcinf 9130 Basecbs 16840 lecple 16895 ltcplt 17941 glbcglb 17943 Tosetctos 18049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-sup 9131 df-inf 9132 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-toset 18050 |
This theorem is referenced by: xrsp0 31192 |
Copyright terms: Public domain | W3C validator |