Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglb Structured version   Visualization version   GIF version

Theorem tosglb 31155
Description: Same theorem as toslub 31153, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tosglb (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))

Proof of Theorem tosglb
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosglb.b . . . . 5 𝐵 = (Base‘𝐾)
2 tosglb.l . . . . 5 < = (lt‘𝐾)
3 tosglb.1 . . . . 5 (𝜑𝐾 ∈ Toset)
4 tosglb.2 . . . . 5 (𝜑𝐴𝐵)
5 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5tosglblem 31154 . . . 4 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7232 . . 3 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2738 . . . 4 (glb‘𝐾) = (glb‘𝐾)
9 biid 260 . . . 4 ((∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)) ↔ (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎)))
101, 5, 8, 9, 3, 4glbval 18002 . . 3 (𝜑 → ((glb‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑎(le‘𝐾)𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐(le‘𝐾)𝑏𝑐(le‘𝐾)𝑎))))
111, 5, 2tosso 18052 . . . . . . 7 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 266 . . . . . 6 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 494 . . . . 5 (𝐾 ∈ Toset → < Or 𝐵)
14 cnvso 6180 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1513, 14sylib 217 . . . 4 (𝐾 ∈ Toset → < Or 𝐵)
16 id 22 . . . . 5 ( < Or 𝐵 < Or 𝐵)
1716supval2 9144 . . . 4 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
183, 15, 173syl 18 . . 3 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
197, 10, 183eqtr4d 2788 . 2 (𝜑 → ((glb‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
20 df-inf 9132 . . . 4 inf(𝐴, 𝐵, < ) = sup(𝐴, 𝐵, < )
2120eqcomi 2747 . . 3 sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < )
2221a1i 11 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = inf(𝐴, 𝐵, < ))
2319, 22eqtrd 2778 1 (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070   I cid 5479   Or wor 5493  ccnv 5579  cres 5582  cfv 6418  crio 7211  supcsup 9129  infcinf 9130  Basecbs 16840  lecple 16895  ltcplt 17941  glbcglb 17943  Tosetctos 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-sup 9131  df-inf 9132  df-proset 17928  df-poset 17946  df-plt 17963  df-glb 17980  df-toset 18050
This theorem is referenced by:  xrsp0  31192
  Copyright terms: Public domain W3C validator