Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiinfcl | Structured version Visualization version GIF version |
Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
fiinfcl | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9180 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | cnvso 6190 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | fisupcl 9206 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) |
5 | 1, 4 | eqeltrid 2845 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 ≠ wne 2945 ⊆ wss 3892 ∅c0 4262 Or wor 5503 ◡ccnv 5589 Fincfn 8716 supcsup 9177 infcinf 9178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-om 7707 df-en 8717 df-fin 8720 df-sup 9179 df-inf 9180 |
This theorem is referenced by: infltoreq 9239 aalioulem2 25491 ballotlemiex 32464 ptrecube 35773 heicant 35808 aks4d1p4 40084 aks4d1p7 40088 sticksstones1 40099 cnrefiisplem 43341 fourierdlem42 43661 ioorrnopnlem 43816 hoidmvlelem2 44105 iunhoiioolem 44184 vonioolem1 44189 prmdvdsfmtnof1lem1 45005 prmdvdsfmtnof 45007 |
Copyright terms: Public domain | W3C validator |