MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfcl Structured version   Visualization version   GIF version

Theorem fiinfcl 8695
Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.)
Assertion
Ref Expression
fiinfcl ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)

Proof of Theorem fiinfcl
StepHypRef Expression
1 df-inf 8637 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 cnvso 5928 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 fisupcl 8663 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
42, 3sylanb 576 . 2 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
51, 4syl5eqel 2863 1 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071  wcel 2107  wne 2969  wss 3792  c0 4141   Or wor 5273  ccnv 5354  Fincfn 8241  supcsup 8634  infcinf 8635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-om 7344  df-1o 7843  df-er 8026  df-en 8242  df-fin 8245  df-sup 8636  df-inf 8637
This theorem is referenced by:  infltoreq  8696  aalioulem2  24525  ballotlemiex  31162  ptrecube  34035  heicant  34070  cnrefiisplem  40969  fourierdlem42  41293  ioorrnopnlem  41448  hoidmvlelem2  41737  iunhoiioolem  41816  vonioolem1  41821  prmdvdsfmtnof1lem1  42517  prmdvdsfmtnof  42519
  Copyright terms: Public domain W3C validator