Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiinfcl | Structured version Visualization version GIF version |
Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
fiinfcl | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9132 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | cnvso 6180 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | fisupcl 9158 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) | |
4 | 2, 3 | sylanb 580 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 Or wor 5493 ◡ccnv 5579 Fincfn 8691 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-om 7688 df-en 8692 df-fin 8695 df-sup 9131 df-inf 9132 |
This theorem is referenced by: infltoreq 9191 aalioulem2 25398 ballotlemiex 32368 ptrecube 35704 heicant 35739 aks4d1p4 40015 aks4d1p7 40019 sticksstones1 40030 cnrefiisplem 43260 fourierdlem42 43580 ioorrnopnlem 43735 hoidmvlelem2 44024 iunhoiioolem 44103 vonioolem1 44108 prmdvdsfmtnof1lem1 44924 prmdvdsfmtnof 44926 |
Copyright terms: Public domain | W3C validator |