MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfcl Structured version   Visualization version   GIF version

Theorem fiinfcl 9502
Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.)
Assertion
Ref Expression
fiinfcl ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)

Proof of Theorem fiinfcl
StepHypRef Expression
1 df-inf 9444 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 cnvso 6287 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 fisupcl 9470 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
42, 3sylanb 580 . 2 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
51, 4eqeltrid 2836 1 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2105  wne 2939  wss 3948  c0 4322   Or wor 5587  ccnv 5675  Fincfn 8945  supcsup 9441  infcinf 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-om 7860  df-en 8946  df-fin 8949  df-sup 9443  df-inf 9444
This theorem is referenced by:  infltoreq  9503  aalioulem2  26185  ballotlemiex  33964  ptrecube  36952  heicant  36987  aks4d1p4  41411  aks4d1p7  41415  sticksstones1  41429  cnrefiisplem  45004  fourierdlem42  45324  ioorrnopnlem  45479  hoidmvlelem2  45771  iunhoiioolem  45850  vonioolem1  45855  prmdvdsfmtnof1lem1  46711  prmdvdsfmtnof  46713
  Copyright terms: Public domain W3C validator