| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiinfcl | Structured version Visualization version GIF version | ||
| Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| fiinfcl | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9371 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | cnvso 6250 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 3 | fisupcl 9398 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ∅c0 4292 Or wor 5538 ◡ccnv 5630 Fincfn 8896 supcsup 9368 infcinf 9369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-om 7824 df-en 8897 df-fin 8900 df-sup 9370 df-inf 9371 |
| This theorem is referenced by: infltoreq 9432 aalioulem2 26276 ballotlemiex 34488 ptrecube 37609 heicant 37644 aks4d1p4 42062 aks4d1p7 42066 sticksstones1 42129 cnrefiisplem 45822 fourierdlem42 46142 ioorrnopnlem 46297 hoidmvlelem2 46589 iunhoiioolem 46668 vonioolem1 46673 prmdvdsfmtnof1lem1 47580 prmdvdsfmtnof 47582 |
| Copyright terms: Public domain | W3C validator |