| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiinfcl | Structured version Visualization version GIF version | ||
| Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| fiinfcl | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9370 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
| 2 | cnvso 6249 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 3 | fisupcl 9397 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, ◡𝑅) ∈ 𝐵) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ∅c0 4292 Or wor 5538 ◡ccnv 5630 Fincfn 8895 supcsup 9367 infcinf 9368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-om 7823 df-en 8896 df-fin 8899 df-sup 9369 df-inf 9370 |
| This theorem is referenced by: infltoreq 9431 aalioulem2 26274 ballotlemiex 34486 ptrecube 37607 heicant 37642 aks4d1p4 42060 aks4d1p7 42064 sticksstones1 42127 cnrefiisplem 45820 fourierdlem42 46140 ioorrnopnlem 46295 hoidmvlelem2 46587 iunhoiioolem 46666 vonioolem1 46671 prmdvdsfmtnof1lem1 47578 prmdvdsfmtnof 47580 |
| Copyright terms: Public domain | W3C validator |