Step | Hyp | Ref
| Expression |
1 | | df-sup 9131 |
. 2
⊢ sup(𝐵, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} |
2 | | dfrab3 4240 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = (𝐴 ∩ {𝑥 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
3 | | abeq1 2872 |
. . . . . . 7
⊢ ({𝑥 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) ↔ ∀𝑥((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ↔ 𝑥 ∈ (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))))) |
4 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
5 | | eldif 3893 |
. . . . . . . . 9
⊢ (𝑥 ∈ (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))))) |
6 | 4, 5 | mpbiran 705 |
. . . . . . . 8
⊢ (𝑥 ∈ (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) ↔ ¬ 𝑥 ∈ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
7 | 4 | elima 5963 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (◡𝑅 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑦◡𝑅𝑥) |
8 | | dfrex2 3166 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐵 𝑦◡𝑅𝑥 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝑦◡𝑅𝑥) |
9 | 7, 8 | bitri 274 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (◡𝑅 “ 𝐵) ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝑦◡𝑅𝑥) |
10 | 4 | elima 5963 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))) ↔ ∃𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵))𝑦𝑅𝑥) |
11 | | dfrex2 3166 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
(𝐴 ∖ (◡𝑅 “ 𝐵))𝑦𝑅𝑥 ↔ ¬ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥) |
12 | 10, 11 | bitri 274 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))) ↔ ¬ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥) |
13 | 9, 12 | orbi12i 911 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (◡𝑅 “ 𝐵) ∨ 𝑥 ∈ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))) ↔ (¬ ∀𝑦 ∈ 𝐵 ¬ 𝑦◡𝑅𝑥 ∨ ¬ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥)) |
14 | | elun 4079 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))) ↔ (𝑥 ∈ (◡𝑅 “ 𝐵) ∨ 𝑥 ∈ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
15 | | ianor 978 |
. . . . . . . . . 10
⊢ (¬
(∀𝑦 ∈ 𝐵 ¬ 𝑦◡𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥) ↔ (¬ ∀𝑦 ∈ 𝐵 ¬ 𝑦◡𝑅𝑥 ∨ ¬ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥)) |
16 | 13, 14, 15 | 3bitr4i 302 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))) ↔ ¬ (∀𝑦 ∈ 𝐵 ¬ 𝑦◡𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥)) |
17 | 16 | con2bii 357 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑦◡𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥) ↔ ¬ 𝑥 ∈ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
18 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
19 | 18, 4 | brcnv 5780 |
. . . . . . . . . . 11
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
20 | 19 | notbii 319 |
. . . . . . . . . 10
⊢ (¬
𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦) |
21 | 20 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑦◡𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) |
22 | | impexp 450 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ (◡𝑅 “ 𝐵)) → ¬ 𝑦𝑅𝑥) ↔ (𝑦 ∈ 𝐴 → (¬ 𝑦 ∈ (◡𝑅 “ 𝐵) → ¬ 𝑦𝑅𝑥))) |
23 | | eldif 3893 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ (◡𝑅 “ 𝐵))) |
24 | 23 | imbi1i 349 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) → ¬ 𝑦𝑅𝑥) ↔ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ (◡𝑅 “ 𝐵)) → ¬ 𝑦𝑅𝑥)) |
25 | 18 | elima 5963 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (◡𝑅 “ 𝐵) ↔ ∃𝑧 ∈ 𝐵 𝑧◡𝑅𝑦) |
26 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V |
27 | 26, 18 | brcnv 5780 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧◡𝑅𝑦 ↔ 𝑦𝑅𝑧) |
28 | 27 | rexbii 3177 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
𝐵 𝑧◡𝑅𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
29 | 25, 28 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡𝑅 “ 𝐵) ↔ ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
30 | 29 | imbi2i 335 |
. . . . . . . . . . . . 13
⊢ ((𝑦𝑅𝑥 → 𝑦 ∈ (◡𝑅 “ 𝐵)) ↔ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
31 | | con34b 315 |
. . . . . . . . . . . . 13
⊢ ((𝑦𝑅𝑥 → 𝑦 ∈ (◡𝑅 “ 𝐵)) ↔ (¬ 𝑦 ∈ (◡𝑅 “ 𝐵) → ¬ 𝑦𝑅𝑥)) |
32 | 30, 31 | bitr3i 276 |
. . . . . . . . . . . 12
⊢ ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (¬ 𝑦 ∈ (◡𝑅 “ 𝐵) → ¬ 𝑦𝑅𝑥)) |
33 | 32 | imbi2i 335 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ↔ (𝑦 ∈ 𝐴 → (¬ 𝑦 ∈ (◡𝑅 “ 𝐵) → ¬ 𝑦𝑅𝑥))) |
34 | 22, 24, 33 | 3bitr4i 302 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) → ¬ 𝑦𝑅𝑥) ↔ (𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
35 | 34 | ralbii2 3088 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
36 | 21, 35 | anbi12i 626 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑦◡𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (◡𝑅 “ 𝐵)) ¬ 𝑦𝑅𝑥) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
37 | 6, 17, 36 | 3bitr2ri 299 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ↔ 𝑥 ∈ (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))))) |
38 | 3, 37 | mpgbir 1803 |
. . . . . 6
⊢ {𝑥 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
39 | 38 | ineq2i 4140 |
. . . . 5
⊢ (𝐴 ∩ {𝑥 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) = (𝐴 ∩ (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))))) |
40 | | invdif 4199 |
. . . . 5
⊢ (𝐴 ∩ (V ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵)))))) = (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
41 | 39, 40 | eqtri 2766 |
. . . 4
⊢ (𝐴 ∩ {𝑥 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) = (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
42 | 2, 41 | eqtri 2766 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
43 | 42 | unieqi 4849 |
. 2
⊢ ∪ {𝑥
∈ 𝐴 ∣
(∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |
44 | 1, 43 | eqtri 2766 |
1
⊢ sup(𝐵, 𝐴, 𝑅) = ∪ (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) |