MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsinxp Structured version   Visualization version   GIF version

Theorem qsinxp 8582
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Assertion
Ref Expression
qsinxp ((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))

Proof of Theorem qsinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecinxp 8581 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝑥𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))
21eqeq2d 2749 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝑥𝐴) → (𝑦 = [𝑥]𝑅𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))))
32rexbidva 3225 . . 3 ((𝑅𝐴) ⊆ 𝐴 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))))
43abbidv 2807 . 2 ((𝑅𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))})
5 df-qs 8504 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
6 df-qs 8504 . 2 (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}
74, 5, 63eqtr4g 2803 1 ((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  cin 3886  wss 3887   × cxp 5587  cima 5592  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504
This theorem is referenced by:  pi1buni  24203  pi1bas3  24206
  Copyright terms: Public domain W3C validator