MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsinxp Structured version   Visualization version   GIF version

Theorem qsinxp 8717
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Assertion
Ref Expression
qsinxp ((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))

Proof of Theorem qsinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecinxp 8716 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝑥𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))
21eqeq2d 2742 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝑥𝐴) → (𝑦 = [𝑥]𝑅𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))))
32rexbidva 3154 . . 3 ((𝑅𝐴) ⊆ 𝐴 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))))
43abbidv 2797 . 2 ((𝑅𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))})
5 df-qs 8628 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
6 df-qs 8628 . 2 (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}
74, 5, 63eqtr4g 2791 1 ((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  cin 3901  wss 3902   × cxp 5614  cima 5619  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624  df-qs 8628
This theorem is referenced by:  pi1buni  24965  pi1bas3  24968
  Copyright terms: Public domain W3C validator