![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsinxp | Structured version Visualization version GIF version |
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qsinxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecinxp 8785 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))) | |
2 | 1 | eqeq2d 2743 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
3 | 2 | rexbidva 3176 | . . 3 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
4 | 3 | abbidv 2801 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}) |
5 | df-qs 8708 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
6 | df-qs 8708 | . 2 ⊢ (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))} | |
7 | 4, 5, 6 | 3eqtr4g 2797 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 ∃wrex 3070 ∩ cin 3947 ⊆ wss 3948 × cxp 5674 “ cima 5679 [cec 8700 / cqs 8701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8704 df-qs 8708 |
This theorem is referenced by: pi1buni 24555 pi1bas3 24558 |
Copyright terms: Public domain | W3C validator |