MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsinxp Structured version   Visualization version   GIF version

Theorem qsinxp 8733
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Assertion
Ref Expression
qsinxp ((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))

Proof of Theorem qsinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecinxp 8732 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝑥𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))
21eqeq2d 2748 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝑥𝐴) → (𝑦 = [𝑥]𝑅𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))))
32rexbidva 3174 . . 3 ((𝑅𝐴) ⊆ 𝐴 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))))
43abbidv 2806 . 2 ((𝑅𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))})
5 df-qs 8655 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
6 df-qs 8655 . 2 (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}
74, 5, 63eqtr4g 2802 1 ((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2714  wrex 3074  cin 3910  wss 3911   × cxp 5632  cima 5637  [cec 8647   / cqs 8648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ec 8651  df-qs 8655
This theorem is referenced by:  pi1buni  24406  pi1bas3  24409
  Copyright terms: Public domain W3C validator