Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qsinxp | Structured version Visualization version GIF version |
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qsinxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecinxp 8581 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))) | |
2 | 1 | eqeq2d 2749 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
3 | 2 | rexbidva 3225 | . . 3 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
4 | 3 | abbidv 2807 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}) |
5 | df-qs 8504 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
6 | df-qs 8504 | . 2 ⊢ (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))} | |
7 | 4, 5, 6 | 3eqtr4g 2803 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 × cxp 5587 “ cima 5592 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: pi1buni 24203 pi1bas3 24206 |
Copyright terms: Public domain | W3C validator |