Step | Hyp | Ref
| Expression |
1 | | pi1xfr.g |
. . . 4
β’ πΊ = ran (π β βͺ π΅ β¦ β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β©) |
2 | | pi1xfr.p |
. . . . 5
β’ π = (π½ Ο1 (πΉβ0)) |
3 | | pi1xfr.b |
. . . . 5
β’ π΅ = (Baseβπ) |
4 | | pi1xfr.j |
. . . . . 6
β’ (π β π½ β (TopOnβπ)) |
5 | 4 | adantr 479 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β π½ β (TopOnβπ)) |
6 | | iitopon 24619 |
. . . . . . . 8
β’ II β
(TopOnβ(0[,]1)) |
7 | | pi1xfr.f |
. . . . . . . 8
β’ (π β πΉ β (II Cn π½)) |
8 | | cnf2 22973 |
. . . . . . . 8
β’ ((II
β (TopOnβ(0[,]1)) β§ π½ β (TopOnβπ) β§ πΉ β (II Cn π½)) β πΉ:(0[,]1)βΆπ) |
9 | 6, 4, 7, 8 | mp3an2i 1464 |
. . . . . . 7
β’ (π β πΉ:(0[,]1)βΆπ) |
10 | | 0elunit 13450 |
. . . . . . 7
β’ 0 β
(0[,]1) |
11 | | ffvelcdm 7082 |
. . . . . . 7
β’ ((πΉ:(0[,]1)βΆπ β§ 0 β (0[,]1)) β
(πΉβ0) β π) |
12 | 9, 10, 11 | sylancl 584 |
. . . . . 6
β’ (π β (πΉβ0) β π) |
13 | 12 | adantr 479 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β (πΉβ0) β π) |
14 | 3 | a1i 11 |
. . . . . . . 8
β’ (π β π΅ = (Baseβπ)) |
15 | 2, 4, 12, 14 | pi1eluni 24789 |
. . . . . . 7
β’ (π β (π β βͺ π΅ β (π β (II Cn π½) β§ (πβ0) = (πΉβ0) β§ (πβ1) = (πΉβ0)))) |
16 | 15 | biimpa 475 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β (π β (II Cn π½) β§ (πβ0) = (πΉβ0) β§ (πβ1) = (πΉβ0))) |
17 | 16 | simp1d 1140 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β π β (II Cn π½)) |
18 | 16 | simp2d 1141 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β (πβ0) = (πΉβ0)) |
19 | 16 | simp3d 1142 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β (πβ1) = (πΉβ0)) |
20 | 2, 3, 5, 13, 17, 18, 19 | elpi1i 24793 |
. . . 4
β’ ((π β§ π β βͺ π΅) β [π]( βphβπ½) β π΅) |
21 | | pi1xfr.q |
. . . . 5
β’ π = (π½ Ο1 (πΉβ1)) |
22 | | eqid 2730 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
23 | | 1elunit 13451 |
. . . . . . 7
β’ 1 β
(0[,]1) |
24 | | ffvelcdm 7082 |
. . . . . . 7
β’ ((πΉ:(0[,]1)βΆπ β§ 1 β (0[,]1)) β
(πΉβ1) β π) |
25 | 9, 23, 24 | sylancl 584 |
. . . . . 6
β’ (π β (πΉβ1) β π) |
26 | 25 | adantr 479 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β (πΉβ1) β π) |
27 | | pi1xfrval.i |
. . . . . . 7
β’ (π β πΌ β (II Cn π½)) |
28 | 27 | adantr 479 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β πΌ β (II Cn π½)) |
29 | 7 | adantr 479 |
. . . . . . 7
β’ ((π β§ π β βͺ π΅) β πΉ β (II Cn π½)) |
30 | 17, 29, 19 | pcocn 24764 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β (π(*πβπ½)πΉ) β (II Cn π½)) |
31 | 17, 29 | pco0 24761 |
. . . . . . 7
β’ ((π β§ π β βͺ π΅) β ((π(*πβπ½)πΉ)β0) = (πβ0)) |
32 | | pi1xfrval.2 |
. . . . . . . 8
β’ (π β (πΌβ1) = (πΉβ0)) |
33 | 32 | adantr 479 |
. . . . . . 7
β’ ((π β§ π β βͺ π΅) β (πΌβ1) = (πΉβ0)) |
34 | 18, 31, 33 | 3eqtr4rd 2781 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β (πΌβ1) = ((π(*πβπ½)πΉ)β0)) |
35 | 28, 30, 34 | pcocn 24764 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β (πΌ(*πβπ½)(π(*πβπ½)πΉ)) β (II Cn π½)) |
36 | 28, 30 | pco0 24761 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β ((πΌ(*πβπ½)(π(*πβπ½)πΉ))β0) = (πΌβ0)) |
37 | | pi1xfrval.1 |
. . . . . . 7
β’ (π β (πΉβ1) = (πΌβ0)) |
38 | 37 | adantr 479 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β (πΉβ1) = (πΌβ0)) |
39 | 36, 38 | eqtr4d 2773 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β ((πΌ(*πβπ½)(π(*πβπ½)πΉ))β0) = (πΉβ1)) |
40 | 28, 30 | pco1 24762 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β ((πΌ(*πβπ½)(π(*πβπ½)πΉ))β1) = ((π(*πβπ½)πΉ)β1)) |
41 | 17, 29 | pco1 24762 |
. . . . . 6
β’ ((π β§ π β βͺ π΅) β ((π(*πβπ½)πΉ)β1) = (πΉβ1)) |
42 | 40, 41 | eqtrd 2770 |
. . . . 5
β’ ((π β§ π β βͺ π΅) β ((πΌ(*πβπ½)(π(*πβπ½)πΉ))β1) = (πΉβ1)) |
43 | 21, 22, 5, 26, 35, 39, 42 | elpi1i 24793 |
. . . 4
β’ ((π β§ π β βͺ π΅) β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) β (Baseβπ)) |
44 | | eceq1 8743 |
. . . 4
β’ (π = β β [π]( βphβπ½) = [β]( βphβπ½)) |
45 | | oveq1 7418 |
. . . . . 6
β’ (π = β β (π(*πβπ½)πΉ) = (β(*πβπ½)πΉ)) |
46 | 45 | oveq2d 7427 |
. . . . 5
β’ (π = β β (πΌ(*πβπ½)(π(*πβπ½)πΉ)) = (πΌ(*πβπ½)(β(*πβπ½)πΉ))) |
47 | 46 | eceq1d 8744 |
. . . 4
β’ (π = β β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) = [(πΌ(*πβπ½)(β(*πβπ½)πΉ))]( βphβπ½)) |
48 | | phtpcer 24741 |
. . . . . 6
β’ (
βphβπ½) Er (II Cn π½) |
49 | 48 | a1i 11 |
. . . . 5
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (
βphβπ½) Er (II Cn π½)) |
50 | 18 | 3ad2antr1 1186 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (πβ0) = (πΉβ0)) |
51 | 17 | 3ad2antr1 1186 |
. . . . . . . 8
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β π β (II Cn π½)) |
52 | 7 | adantr 479 |
. . . . . . . 8
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β πΉ β (II Cn π½)) |
53 | 51, 52 | pco0 24761 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β ((π(*πβπ½)πΉ)β0) = (πβ0)) |
54 | 32 | adantr 479 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (πΌβ1) = (πΉβ0)) |
55 | 50, 53, 54 | 3eqtr4rd 2781 |
. . . . . 6
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (πΌβ1) = ((π(*πβπ½)πΉ)β0)) |
56 | 27 | adantr 479 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β πΌ β (II Cn π½)) |
57 | 49, 56 | erref 8725 |
. . . . . 6
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β πΌ( βphβπ½)πΌ) |
58 | 19 | 3ad2antr1 1186 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (πβ1) = (πΉβ0)) |
59 | | simpr3 1194 |
. . . . . . . 8
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β [π]( βphβπ½) = [β]( βphβπ½)) |
60 | 49, 51 | erth 8754 |
. . . . . . . 8
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (π( βphβπ½)β β [π]( βphβπ½) = [β]( βphβπ½))) |
61 | 59, 60 | mpbird 256 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β π( βphβπ½)β) |
62 | 49, 52 | erref 8725 |
. . . . . . 7
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β πΉ( βphβπ½)πΉ) |
63 | 58, 61, 62 | pcohtpy 24767 |
. . . . . 6
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (π(*πβπ½)πΉ)( βphβπ½)(β(*πβπ½)πΉ)) |
64 | 55, 57, 63 | pcohtpy 24767 |
. . . . 5
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β (πΌ(*πβπ½)(π(*πβπ½)πΉ))( βphβπ½)(πΌ(*πβπ½)(β(*πβπ½)πΉ))) |
65 | 49, 64 | erthi 8756 |
. . . 4
β’ ((π β§ (π β βͺ π΅ β§ β β βͺ π΅ β§ [π]( βphβπ½) = [β]( βphβπ½))) β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) = [(πΌ(*πβπ½)(β(*πβπ½)πΉ))]( βphβπ½)) |
66 | 1, 20, 43, 44, 47, 65 | fliftfund 7312 |
. . 3
β’ (π β Fun πΊ) |
67 | 1, 20, 43 | fliftf 7314 |
. . 3
β’ (π β (Fun πΊ β πΊ:ran (π β βͺ π΅ β¦ [π]( βphβπ½))βΆ(Baseβπ))) |
68 | 66, 67 | mpbid 231 |
. 2
β’ (π β πΊ:ran (π β βͺ π΅ β¦ [π]( βphβπ½))βΆ(Baseβπ)) |
69 | 2, 4, 12, 14 | pi1bas2 24788 |
. . . 4
β’ (π β π΅ = (βͺ π΅ / (
βphβπ½))) |
70 | | df-qs 8711 |
. . . . 5
β’ (βͺ π΅
/ ( βphβπ½)) = {π β£ βπ β βͺ π΅π = [π]( βphβπ½)} |
71 | | eqid 2730 |
. . . . . 6
β’ (π β βͺ π΅
β¦ [π](
βphβπ½)) = (π β βͺ π΅ β¦ [π]( βphβπ½)) |
72 | 71 | rnmpt 5953 |
. . . . 5
β’ ran
(π β βͺ π΅
β¦ [π](
βphβπ½)) = {π β£ βπ β βͺ π΅π = [π]( βphβπ½)} |
73 | 70, 72 | eqtr4i 2761 |
. . . 4
β’ (βͺ π΅
/ ( βphβπ½)) = ran (π β βͺ π΅ β¦ [π]( βphβπ½)) |
74 | 69, 73 | eqtrdi 2786 |
. . 3
β’ (π β π΅ = ran (π β βͺ π΅ β¦ [π]( βphβπ½))) |
75 | 74 | feq2d 6702 |
. 2
β’ (π β (πΊ:π΅βΆ(Baseβπ) β πΊ:ran (π β βͺ π΅ β¦ [π]( βphβπ½))βΆ(Baseβπ))) |
76 | 68, 75 | mpbird 256 |
1
β’ (π β πΊ:π΅βΆ(Baseβπ)) |