MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrf Structured version   Visualization version   GIF version

Theorem pi1xfrf 24953
Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfrval.i (𝜑𝐼 ∈ (II Cn 𝐽))
pi1xfrval.1 (𝜑 → (𝐹‘1) = (𝐼‘0))
pi1xfrval.2 (𝜑 → (𝐼‘1) = (𝐹‘0))
Assertion
Ref Expression
pi1xfrf (𝜑𝐺:𝐵⟶(Base‘𝑄))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐼   𝜑,𝑔   𝑔,𝐽   𝑃,𝑔   𝑄,𝑔
Allowed substitution hints:   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1xfrf
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
2 pi1xfr.p . . . . 5 𝑃 = (𝐽 π1 (𝐹‘0))
3 pi1xfr.b . . . . 5 𝐵 = (Base‘𝑃)
4 pi1xfr.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
54adantr 480 . . . . 5 ((𝜑𝑔 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
6 iitopon 24772 . . . . . . . 8 II ∈ (TopOn‘(0[,]1))
7 pi1xfr.f . . . . . . . 8 (𝜑𝐹 ∈ (II Cn 𝐽))
8 cnf2 23136 . . . . . . . 8 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
96, 4, 7, 8mp3an2i 1468 . . . . . . 7 (𝜑𝐹:(0[,]1)⟶𝑋)
10 0elunit 13430 . . . . . . 7 0 ∈ (0[,]1)
11 ffvelcdm 7053 . . . . . . 7 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
129, 10, 11sylancl 586 . . . . . 6 (𝜑 → (𝐹‘0) ∈ 𝑋)
1312adantr 480 . . . . 5 ((𝜑𝑔 𝐵) → (𝐹‘0) ∈ 𝑋)
143a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
152, 4, 12, 14pi1eluni 24942 . . . . . . 7 (𝜑 → (𝑔 𝐵 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0))))
1615biimpa 476 . . . . . 6 ((𝜑𝑔 𝐵) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = (𝐹‘0) ∧ (𝑔‘1) = (𝐹‘0)))
1716simp1d 1142 . . . . 5 ((𝜑𝑔 𝐵) → 𝑔 ∈ (II Cn 𝐽))
1816simp2d 1143 . . . . 5 ((𝜑𝑔 𝐵) → (𝑔‘0) = (𝐹‘0))
1916simp3d 1144 . . . . 5 ((𝜑𝑔 𝐵) → (𝑔‘1) = (𝐹‘0))
202, 3, 5, 13, 17, 18, 19elpi1i 24946 . . . 4 ((𝜑𝑔 𝐵) → [𝑔]( ≃ph𝐽) ∈ 𝐵)
21 pi1xfr.q . . . . 5 𝑄 = (𝐽 π1 (𝐹‘1))
22 eqid 2729 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
23 1elunit 13431 . . . . . . 7 1 ∈ (0[,]1)
24 ffvelcdm 7053 . . . . . . 7 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
259, 23, 24sylancl 586 . . . . . 6 (𝜑 → (𝐹‘1) ∈ 𝑋)
2625adantr 480 . . . . 5 ((𝜑𝑔 𝐵) → (𝐹‘1) ∈ 𝑋)
27 pi1xfrval.i . . . . . . 7 (𝜑𝐼 ∈ (II Cn 𝐽))
2827adantr 480 . . . . . 6 ((𝜑𝑔 𝐵) → 𝐼 ∈ (II Cn 𝐽))
297adantr 480 . . . . . . 7 ((𝜑𝑔 𝐵) → 𝐹 ∈ (II Cn 𝐽))
3017, 29, 19pcocn 24917 . . . . . 6 ((𝜑𝑔 𝐵) → (𝑔(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
3117, 29pco0 24914 . . . . . . 7 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
32 pi1xfrval.2 . . . . . . . 8 (𝜑 → (𝐼‘1) = (𝐹‘0))
3332adantr 480 . . . . . . 7 ((𝜑𝑔 𝐵) → (𝐼‘1) = (𝐹‘0))
3418, 31, 333eqtr4rd 2775 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
3528, 30, 34pcocn 24917 . . . . 5 ((𝜑𝑔 𝐵) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
3628, 30pco0 24914 . . . . . 6 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
37 pi1xfrval.1 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐼‘0))
3837adantr 480 . . . . . 6 ((𝜑𝑔 𝐵) → (𝐹‘1) = (𝐼‘0))
3936, 38eqtr4d 2767 . . . . 5 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
4028, 30pco1 24915 . . . . . 6 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = ((𝑔(*𝑝𝐽)𝐹)‘1))
4117, 29pco1 24915 . . . . . 6 ((𝜑𝑔 𝐵) → ((𝑔(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
4240, 41eqtrd 2764 . . . . 5 ((𝜑𝑔 𝐵) → ((𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
4321, 22, 5, 26, 35, 39, 42elpi1i 24946 . . . 4 ((𝜑𝑔 𝐵) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) ∈ (Base‘𝑄))
44 eceq1 8710 . . . 4 (𝑔 = → [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))
45 oveq1 7394 . . . . . 6 (𝑔 = → (𝑔(*𝑝𝐽)𝐹) = ((*𝑝𝐽)𝐹))
4645oveq2d 7403 . . . . 5 (𝑔 = → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))
4746eceq1d 8711 . . . 4 (𝑔 = → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽))
48 phtpcer 24894 . . . . . 6 ( ≃ph𝐽) Er (II Cn 𝐽)
4948a1i 11 . . . . 5 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → ( ≃ph𝐽) Er (II Cn 𝐽))
50183ad2antr1 1189 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔‘0) = (𝐹‘0))
51173ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔 ∈ (II Cn 𝐽))
527adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝐹 ∈ (II Cn 𝐽))
5351, 52pco0 24914 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → ((𝑔(*𝑝𝐽)𝐹)‘0) = (𝑔‘0))
5432adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝐼‘1) = (𝐹‘0))
5550, 53, 543eqtr4rd 2775 . . . . . 6 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝐼‘1) = ((𝑔(*𝑝𝐽)𝐹)‘0))
5627adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝐼 ∈ (II Cn 𝐽))
5749, 56erref 8691 . . . . . 6 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝐼( ≃ph𝐽)𝐼)
58193ad2antr1 1189 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔‘1) = (𝐹‘0))
59 simpr3 1197 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))
6049, 51erth 8725 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔( ≃ph𝐽) ↔ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽)))
6159, 60mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔( ≃ph𝐽))
6249, 52erref 8691 . . . . . . 7 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝐹( ≃ph𝐽)𝐹)
6358, 61, 62pcohtpy 24920 . . . . . 6 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔(*𝑝𝐽)𝐹)( ≃ph𝐽)((*𝑝𝐽)𝐹))
6455, 57, 63pcohtpy 24920 . . . . 5 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))
6549, 64erthi 8727 . . . 4 ((𝜑 ∧ (𝑔 𝐵 𝐵 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽))
661, 20, 43, 44, 47, 65fliftfund 7288 . . 3 (𝜑 → Fun 𝐺)
671, 20, 43fliftf 7290 . . 3 (𝜑 → (Fun 𝐺𝐺:ran (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄)))
6866, 67mpbid 232 . 2 (𝜑𝐺:ran (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄))
692, 4, 12, 14pi1bas2 24941 . . . 4 (𝜑𝐵 = ( 𝐵 / ( ≃ph𝐽)))
70 df-qs 8677 . . . . 5 ( 𝐵 / ( ≃ph𝐽)) = {𝑠 ∣ ∃𝑔 𝐵𝑠 = [𝑔]( ≃ph𝐽)}
71 eqid 2729 . . . . . 6 (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽)) = (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽))
7271rnmpt 5921 . . . . 5 ran (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽)) = {𝑠 ∣ ∃𝑔 𝐵𝑠 = [𝑔]( ≃ph𝐽)}
7370, 72eqtr4i 2755 . . . 4 ( 𝐵 / ( ≃ph𝐽)) = ran (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽))
7469, 73eqtrdi 2780 . . 3 (𝜑𝐵 = ran (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽)))
7574feq2d 6672 . 2 (𝜑 → (𝐺:𝐵⟶(Base‘𝑄) ↔ 𝐺:ran (𝑔 𝐵 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄)))
7668, 75mpbird 257 1 (𝜑𝐺:𝐵⟶(Base‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cop 4595   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387   Er wer 8668  [cec 8669   / cqs 8670  0cc0 11068  1c1 11069  [,]cicc 13309  Basecbs 17179  TopOnctopon 22797   Cn ccn 23111  IIcii 24768  phcphtpc 24868  *𝑝cpco 24900   π1 cpi1 24903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-ii 24770  df-htpy 24869  df-phtpy 24870  df-phtpc 24891  df-pco 24905  df-om1 24906  df-pi1 24908
This theorem is referenced by:  pi1xfrval  24954  pi1xfr  24955
  Copyright terms: Public domain W3C validator