MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftf Structured version   Visualization version   GIF version

Theorem qliftf 8735
Description: The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftf (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋𝑉)
51, 2, 3, 4qliftlem 8728 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftf 7255 . 2 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
7 df-qs 8634 . . . . 5 (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
8 eqid 2733 . . . . . 6 (𝑥𝑋 ↦ [𝑥]𝑅) = (𝑥𝑋 ↦ [𝑥]𝑅)
98rnmpt 5901 . . . . 5 ran (𝑥𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
107, 9eqtr4i 2759 . . . 4 (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅)
1110a1i 11 . . 3 (𝜑 → (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅))
1211feq2d 6640 . 2 (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
136, 12bitr4d 282 1 (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  cop 4581  cmpt 5174  ran crn 5620  Fun wfun 6480  wf 6482   Er wer 8625  [cec 8626   / cqs 8627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6488  df-fn 6489  df-f 6490  df-er 8628  df-ec 8630  df-qs 8634
This theorem is referenced by:  orbsta  19227  frgpupf  19687
  Copyright terms: Public domain W3C validator