Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qliftf | Structured version Visualization version GIF version |
Description: The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
qliftf | ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | qliftlem 8587 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | 1, 5, 2 | fliftf 7186 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
7 | df-qs 8504 | . . . . 5 ⊢ (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} | |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) | |
9 | 8 | rnmpt 5864 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} |
10 | 7, 9 | eqtr4i 2769 | . . . 4 ⊢ (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)) |
12 | 11 | feq2d 6586 | . 2 ⊢ (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
13 | 6, 12 | bitr4d 281 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 〈cop 4567 ↦ cmpt 5157 ran crn 5590 Fun wfun 6427 ⟶wf 6429 Er wer 8495 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-er 8498 df-ec 8500 df-qs 8504 |
This theorem is referenced by: orbsta 18919 frgpupf 19379 |
Copyright terms: Public domain | W3C validator |