![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qliftf | Structured version Visualization version GIF version |
Description: The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
qliftf | ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) | |
2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | qliftlem 8738 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | 1, 5, 2 | fliftf 7261 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
7 | df-qs 8655 | . . . . 5 ⊢ (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} | |
8 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) | |
9 | 8 | rnmpt 5911 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} |
10 | 7, 9 | eqtr4i 2768 | . . . 4 ⊢ (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)) |
12 | 11 | feq2d 6655 | . 2 ⊢ (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
13 | 6, 12 | bitr4d 282 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2714 ∃wrex 3074 ⟨cop 4593 ↦ cmpt 5189 ran crn 5635 Fun wfun 6491 ⟶wf 6493 Er wer 8646 [cec 8647 / cqs 8648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fun 6499 df-fn 6500 df-f 6501 df-er 8649 df-ec 8651 df-qs 8655 |
This theorem is referenced by: orbsta 19094 frgpupf 19556 |
Copyright terms: Public domain | W3C validator |