MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftf Structured version   Visualization version   GIF version

Theorem qliftf 8038
Description: The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftf (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 8031 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftf 6757 . 2 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
7 df-qs 7953 . . . . 5 (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
8 eqid 2765 . . . . . 6 (𝑥𝑋 ↦ [𝑥]𝑅) = (𝑥𝑋 ↦ [𝑥]𝑅)
98rnmpt 5540 . . . . 5 ran (𝑥𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
107, 9eqtr4i 2790 . . . 4 (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅)
1110a1i 11 . . 3 (𝜑 → (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅))
1211feq2d 6209 . 2 (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
136, 12bitr4d 273 1 (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  wrex 3056  Vcvv 3350  cop 4340  cmpt 4888  ran crn 5278  Fun wfun 6062  wf 6064   Er wer 7944  [cec 7945   / cqs 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fv 6076  df-er 7947  df-ec 7949  df-qs 7953
This theorem is referenced by:  orbsta  18009  frgpupf  18452
  Copyright terms: Public domain W3C validator