| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qliftf | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| qliftf | ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | qliftlem 8728 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| 6 | 1, 5, 2 | fliftf 7255 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
| 7 | df-qs 8634 | . . . . 5 ⊢ (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) | |
| 9 | 8 | rnmpt 5901 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} |
| 10 | 7, 9 | eqtr4i 2759 | . . . 4 ⊢ (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)) |
| 12 | 11 | feq2d 6640 | . 2 ⊢ (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
| 13 | 6, 12 | bitr4d 282 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 〈cop 4581 ↦ cmpt 5174 ran crn 5620 Fun wfun 6480 ⟶wf 6482 Er wer 8625 [cec 8626 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-er 8628 df-ec 8630 df-qs 8634 |
| This theorem is referenced by: orbsta 19227 frgpupf 19687 |
| Copyright terms: Public domain | W3C validator |