|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > qliftf | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | 
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | 
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) | 
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| qliftf | ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | qliftlem 8838 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | 
| 6 | 1, 5, 2 | fliftf 7335 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) | 
| 7 | df-qs 8751 | . . . . 5 ⊢ (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} | |
| 8 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) | |
| 9 | 8 | rnmpt 5968 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} | 
| 10 | 7, 9 | eqtr4i 2768 | . . . 4 ⊢ (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) | 
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)) | 
| 12 | 11 | feq2d 6722 | . 2 ⊢ (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) | 
| 13 | 6, 12 | bitr4d 282 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 〈cop 4632 ↦ cmpt 5225 ran crn 5686 Fun wfun 6555 ⟶wf 6557 Er wer 8742 [cec 8743 / cqs 8744 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-fun 6563 df-fn 6564 df-f 6565 df-er 8745 df-ec 8747 df-qs 8751 | 
| This theorem is referenced by: orbsta 19331 frgpupf 19791 | 
| Copyright terms: Public domain | W3C validator |