![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qsresid | Structured version Visualization version GIF version |
Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020.) |
Ref | Expression |
---|---|
qsresid | ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = (𝐴 / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecres2 38235 | . . . . 5 ⊢ (𝑣 ∈ 𝐴 → [𝑣](𝑅 ↾ 𝐴) = [𝑣]𝑅) | |
2 | 1 | eqeq2d 2751 | . . . 4 ⊢ (𝑣 ∈ 𝐴 → (𝑢 = [𝑣](𝑅 ↾ 𝐴) ↔ 𝑢 = [𝑣]𝑅)) |
3 | 2 | rexbiia 3098 | . . 3 ⊢ (∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴) ↔ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅) |
4 | 3 | abbii 2812 | . 2 ⊢ {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴)} = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅} |
5 | df-qs 8769 | . 2 ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴)} | |
6 | df-qs 8769 | . 2 ⊢ (𝐴 / 𝑅) = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅} | |
7 | 4, 5, 6 | 3eqtr4i 2778 | 1 ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = (𝐴 / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ↾ cres 5702 [cec 8761 / cqs 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 |
This theorem is referenced by: n0elim 38606 |
Copyright terms: Public domain | W3C validator |