Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsresid Structured version   Visualization version   GIF version

Theorem qsresid 38320
Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020.)
Assertion
Ref Expression
qsresid (𝐴 / (𝑅𝐴)) = (𝐴 / 𝑅)

Proof of Theorem qsresid
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elecreseq 8723 . . . . 5 (𝑣𝐴 → [𝑣](𝑅𝐴) = [𝑣]𝑅)
21eqeq2d 2741 . . . 4 (𝑣𝐴 → (𝑢 = [𝑣](𝑅𝐴) ↔ 𝑢 = [𝑣]𝑅))
32rexbiia 3075 . . 3 (∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴) ↔ ∃𝑣𝐴 𝑢 = [𝑣]𝑅)
43abbii 2797 . 2 {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴)} = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣]𝑅}
5 df-qs 8680 . 2 (𝐴 / (𝑅𝐴)) = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴)}
6 df-qs 8680 . 2 (𝐴 / 𝑅) = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣]𝑅}
74, 5, 63eqtr4i 2763 1 (𝐴 / (𝑅𝐴)) = (𝐴 / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  cres 5643  [cec 8672   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680
This theorem is referenced by:  n0elim  38649
  Copyright terms: Public domain W3C validator