| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qsresid | Structured version Visualization version GIF version | ||
| Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| qsresid | ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = (𝐴 / 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecreseq 8720 | . . . . 5 ⊢ (𝑣 ∈ 𝐴 → [𝑣](𝑅 ↾ 𝐴) = [𝑣]𝑅) | |
| 2 | 1 | eqeq2d 2740 | . . . 4 ⊢ (𝑣 ∈ 𝐴 → (𝑢 = [𝑣](𝑅 ↾ 𝐴) ↔ 𝑢 = [𝑣]𝑅)) |
| 3 | 2 | rexbiia 3074 | . . 3 ⊢ (∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴) ↔ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅) |
| 4 | 3 | abbii 2796 | . 2 ⊢ {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴)} = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅} |
| 5 | df-qs 8677 | . 2 ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴)} | |
| 6 | df-qs 8677 | . 2 ⊢ (𝐴 / 𝑅) = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅} | |
| 7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = (𝐴 / 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ↾ cres 5640 [cec 8669 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: n0elim 38642 |
| Copyright terms: Public domain | W3C validator |