Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsresid Structured version   Visualization version   GIF version

Theorem qsresid 38436
Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020.)
Assertion
Ref Expression
qsresid (𝐴 / (𝑅𝐴)) = (𝐴 / 𝑅)

Proof of Theorem qsresid
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elecreseq 8680 . . . . 5 (𝑣𝐴 → [𝑣](𝑅𝐴) = [𝑣]𝑅)
21eqeq2d 2744 . . . 4 (𝑣𝐴 → (𝑢 = [𝑣](𝑅𝐴) ↔ 𝑢 = [𝑣]𝑅))
32rexbiia 3078 . . 3 (∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴) ↔ ∃𝑣𝐴 𝑢 = [𝑣]𝑅)
43abbii 2800 . 2 {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴)} = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣]𝑅}
5 df-qs 8637 . 2 (𝐴 / (𝑅𝐴)) = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴)}
6 df-qs 8637 . 2 (𝐴 / 𝑅) = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣]𝑅}
74, 5, 63eqtr4i 2766 1 (𝐴 / (𝑅𝐴)) = (𝐴 / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  cres 5623  [cec 8629   / cqs 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637
This theorem is referenced by:  n0elim  38821
  Copyright terms: Public domain W3C validator