Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsresid Structured version   Visualization version   GIF version

Theorem qsresid 38313
Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020.)
Assertion
Ref Expression
qsresid (𝐴 / (𝑅𝐴)) = (𝐴 / 𝑅)

Proof of Theorem qsresid
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elecreseq 8720 . . . . 5 (𝑣𝐴 → [𝑣](𝑅𝐴) = [𝑣]𝑅)
21eqeq2d 2740 . . . 4 (𝑣𝐴 → (𝑢 = [𝑣](𝑅𝐴) ↔ 𝑢 = [𝑣]𝑅))
32rexbiia 3074 . . 3 (∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴) ↔ ∃𝑣𝐴 𝑢 = [𝑣]𝑅)
43abbii 2796 . 2 {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴)} = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣]𝑅}
5 df-qs 8677 . 2 (𝐴 / (𝑅𝐴)) = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣](𝑅𝐴)}
6 df-qs 8677 . 2 (𝐴 / 𝑅) = {𝑢 ∣ ∃𝑣𝐴 𝑢 = [𝑣]𝑅}
74, 5, 63eqtr4i 2762 1 (𝐴 / (𝑅𝐴)) = (𝐴 / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cres 5640  [cec 8669   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677
This theorem is referenced by:  n0elim  38642
  Copyright terms: Public domain W3C validator