Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qsresid | Structured version Visualization version GIF version |
Description: Simplification of a special quotient set. (Contributed by Peter Mazsa, 2-Sep-2020.) |
Ref | Expression |
---|---|
qsresid | ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = (𝐴 / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecres2 36341 | . . . . 5 ⊢ (𝑣 ∈ 𝐴 → [𝑣](𝑅 ↾ 𝐴) = [𝑣]𝑅) | |
2 | 1 | eqeq2d 2749 | . . . 4 ⊢ (𝑣 ∈ 𝐴 → (𝑢 = [𝑣](𝑅 ↾ 𝐴) ↔ 𝑢 = [𝑣]𝑅)) |
3 | 2 | rexbiia 3176 | . . 3 ⊢ (∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴) ↔ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴)} = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅} |
5 | df-qs 8462 | . 2 ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣](𝑅 ↾ 𝐴)} | |
6 | df-qs 8462 | . 2 ⊢ (𝐴 / 𝑅) = {𝑢 ∣ ∃𝑣 ∈ 𝐴 𝑢 = [𝑣]𝑅} | |
7 | 4, 5, 6 | 3eqtr4i 2776 | 1 ⊢ (𝐴 / (𝑅 ↾ 𝐴)) = (𝐴 / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ↾ cres 5582 [cec 8454 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 |
This theorem is referenced by: n0el3 36690 |
Copyright terms: Public domain | W3C validator |