| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusbas2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the group quotient set, as the set of all cosets of the form ({𝑥} ⊕ 𝑁). (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| qusbas2.1 | ⊢ 𝐵 = (Base‘𝐺) |
| qusbas2.2 | ⊢ ⊕ = (LSSum‘𝐺) |
| qusbas2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| qusbas2 | ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} ⊕ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8751 | . . 3 ⊢ (𝐵 / (𝐺 ~QG 𝑁)) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥](𝐺 ~QG 𝑁)} | |
| 2 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
| 3 | 2 | rnmpt 5968 | . . 3 ⊢ ran (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥](𝐺 ~QG 𝑁)} |
| 4 | 1, 3 | eqtr4i 2768 | . 2 ⊢ (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
| 5 | qusbas2.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | qusbas2.2 | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 7 | qusbas2.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) | |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 9 | 5, 6, 7, 8 | quslsm 33433 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
| 10 | 9 | mpteq2dva 5242 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐵 ↦ ({𝑥} ⊕ 𝑁))) |
| 11 | 10 | rneqd 5949 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} ⊕ 𝑁))) |
| 12 | 4, 11 | eqtrid 2789 | 1 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥 ∈ 𝐵 ↦ ({𝑥} ⊕ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 {csn 4626 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 [cec 8743 / cqs 8744 Basecbs 17247 SubGrpcsubg 19138 ~QG cqg 19140 LSSumclsm 19652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-ec 8747 df-qs 8751 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-eqg 19143 df-oppg 19364 df-lsm 19654 |
| This theorem is referenced by: qusrn 33437 |
| Copyright terms: Public domain | W3C validator |