Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusbas2 Structured version   Visualization version   GIF version

Theorem qusbas2 33284
Description: Alternate definition of the group quotient set, as the set of all cosets of the form ({𝑥} 𝑁). (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
qusbas2.1 𝐵 = (Base‘𝐺)
qusbas2.2 = (LSSum‘𝐺)
qusbas2.3 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
qusbas2 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} 𝑁)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   (𝑥)

Proof of Theorem qusbas2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8729 . . 3 (𝐵 / (𝐺 ~QG 𝑁)) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥](𝐺 ~QG 𝑁)}
2 eqid 2726 . . . 4 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
32rnmpt 5951 . . 3 ran (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥](𝐺 ~QG 𝑁)}
41, 3eqtr4i 2757 . 2 (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
5 qusbas2.1 . . . . 5 𝐵 = (Base‘𝐺)
6 qusbas2.2 . . . . 5 = (LSSum‘𝐺)
7 qusbas2.3 . . . . 5 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
8 simpr 483 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
95, 6, 7, 8quslsm 33283 . . . 4 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
109mpteq2dva 5243 . . 3 (𝜑 → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐵 ↦ ({𝑥} 𝑁)))
1110rneqd 5934 . 2 (𝜑 → ran (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} 𝑁)))
124, 11eqtrid 2778 1 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = ran (𝑥𝐵 ↦ ({𝑥} 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  {csn 4623  cmpt 5226  ran crn 5673  cfv 6543  (class class class)co 7413  [cec 8721   / cqs 8722  Basecbs 17205  SubGrpcsubg 19107   ~QG cqg 19109  LSSumclsm 19625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-ec 8725  df-qs 8729  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-plusg 17271  df-0g 17448  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-grp 18923  df-minusg 18924  df-subg 19110  df-eqg 19112  df-oppg 19333  df-lsm 19627
This theorem is referenced by:  qusrn  33287
  Copyright terms: Public domain W3C validator