![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snec | Structured version Visualization version GIF version |
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
snec.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | eceq1 8783 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
3 | 2 | eqeq2d 2746 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) |
4 | 1, 3 | rexsn 4687 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) |
5 | 4 | abbii 2807 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} |
6 | df-qs 8750 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
7 | df-sn 4632 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
8 | 5, 6, 7 | 3eqtr4ri 2774 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 {csn 4631 [cec 8742 / cqs 8743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-qs 8750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |