MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snec Structured version   Visualization version   GIF version

Theorem snec 8728
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1 𝐴 ∈ V
Assertion
Ref Expression
snec {[𝐴]𝑅} = ({𝐴} / 𝑅)

Proof of Theorem snec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4 𝐴 ∈ V
2 eceq1 8687 . . . . 5 (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅)
32eqeq2d 2740 . . . 4 (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅𝑦 = [𝐴]𝑅))
41, 3rexsn 4642 . . 3 (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅𝑦 = [𝐴]𝑅)
54abbii 2796 . 2 {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦𝑦 = [𝐴]𝑅}
6 df-qs 8654 . 2 ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅}
7 df-sn 4586 . 2 {[𝐴]𝑅} = {𝑦𝑦 = [𝐴]𝑅}
85, 6, 73eqtr4ri 2763 1 {[𝐴]𝑅} = ({𝐴} / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444  {csn 4585  [cec 8646   / cqs 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator