![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snec | Structured version Visualization version GIF version |
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
snec.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | eceq1 8802 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
3 | 2 | eqeq2d 2751 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) |
4 | 1, 3 | rexsn 4706 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) |
5 | 4 | abbii 2812 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} |
6 | df-qs 8769 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
7 | df-sn 4649 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
8 | 5, 6, 7 | 3eqtr4ri 2779 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 {csn 4648 [cec 8761 / cqs 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |