| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snec | Structured version Visualization version GIF version | ||
| Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| snec.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | eceq1 8763 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
| 3 | 2 | eqeq2d 2747 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) |
| 4 | 1, 3 | rexsn 4663 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) |
| 5 | 4 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} |
| 6 | df-qs 8730 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
| 7 | df-sn 4607 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2770 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 Vcvv 3464 {csn 4606 [cec 8722 / cqs 8723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 df-qs 8730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |