MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snec Structured version   Visualization version   GIF version

Theorem snec 8697
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1 𝐴 ∈ V
Assertion
Ref Expression
snec {[𝐴]𝑅} = ({𝐴} / 𝑅)

Proof of Theorem snec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4 𝐴 ∈ V
2 eceq1 8656 . . . . 5 (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅)
32eqeq2d 2742 . . . 4 (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅𝑦 = [𝐴]𝑅))
41, 3rexsn 4630 . . 3 (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅𝑦 = [𝐴]𝑅)
54abbii 2798 . 2 {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦𝑦 = [𝐴]𝑅}
6 df-qs 8623 . 2 ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅}
7 df-sn 4572 . 2 {[𝐴]𝑅} = {𝑦𝑦 = [𝐴]𝑅}
85, 6, 73eqtr4ri 2765 1 {[𝐴]𝑅} = ({𝐴} / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  {csn 4571  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619  df-qs 8623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator