![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snec | Structured version Visualization version GIF version |
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
snec.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | eceq1 8687 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
3 | 2 | eqeq2d 2748 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) |
4 | 1, 3 | rexsn 4644 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) |
5 | 4 | abbii 2807 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} |
6 | df-qs 8655 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
7 | df-sn 4588 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
8 | 5, 6, 7 | 3eqtr4ri 2776 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 {cab 2714 ∃wrex 3074 Vcvv 3446 {csn 4587 [cec 8647 / cqs 8648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ec 8651 df-qs 8655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |