Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quslem | Structured version Visualization version GIF version |
Description: The function in qusval 17170 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
2 | ecexg 8460 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
4 | 3 | ralrimivw 3108 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
6 | 5 | fnmpt 6557 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
8 | dffn4 6678 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
9 | 7, 8 | sylib 217 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
10 | 5 | rnmpt 5853 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
11 | df-qs 8462 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
12 | 10, 11 | eqtr4i 2769 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
13 | foeq3 6670 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
15 | 9, 14 | sylib 217 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ↦ cmpt 5153 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 [cec 8454 / cqs 8455 Basecbs 16840 /s cqus 17133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-fo 6424 df-ec 8458 df-qs 8462 |
This theorem is referenced by: qusbas 17173 quss 17174 qusaddvallem 17179 qusaddflem 17180 qusaddval 17181 qusaddf 17182 qusmulval 17183 qusmulf 17184 qusgrp2 18608 qusring2 19774 znzrhfo 20667 qustps 22781 qustgpopn 23179 qustgplem 23180 qustgphaus 23182 qusker 31451 qusscaval 31454 quslmod 31456 quslmhm 31457 qusdimsum 31611 |
Copyright terms: Public domain | W3C validator |