Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quslem | Structured version Visualization version GIF version |
Description: The function in qusval 17330 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
2 | ecexg 8552 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
4 | 3 | ralrimivw 3144 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
6 | 5 | fnmpt 6611 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
8 | dffn4 6732 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
9 | 7, 8 | sylib 217 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
10 | 5 | rnmpt 5884 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
11 | df-qs 8554 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
12 | 10, 11 | eqtr4i 2768 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
13 | foeq3 6724 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
15 | 9, 14 | sylib 217 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2714 ∀wral 3062 ∃wrex 3071 Vcvv 3441 ↦ cmpt 5170 ran crn 5609 Fn wfn 6461 –onto→wfo 6464 ‘cfv 6466 (class class class)co 7317 [cec 8546 / cqs 8547 Basecbs 16989 /s cqus 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-fun 6468 df-fn 6469 df-fo 6472 df-ec 8550 df-qs 8554 |
This theorem is referenced by: qusbas 17333 quss 17334 qusaddvallem 17339 qusaddflem 17340 qusaddval 17341 qusaddf 17342 qusmulval 17343 qusmulf 17344 qusgrp2 18769 qusring2 19934 znzrhfo 20838 qustps 22956 qustgpopn 23354 qustgplem 23355 qustgphaus 23357 qusker 31687 qusscaval 31690 quslmod 31692 quslmhm 31693 qusdimsum 31849 |
Copyright terms: Public domain | W3C validator |