MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quslem Structured version   Visualization version   GIF version

Theorem quslem 17513
Description: The function in qusval 17512 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
quslem (𝜑𝐹:𝑉onto→(𝑉 / ))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem quslem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6 (𝜑𝑊)
2 ecexg 8678 . . . . . 6 ( 𝑊 → [𝑥] ∈ V)
31, 2syl 17 . . . . 5 (𝜑 → [𝑥] ∈ V)
43ralrimivw 3130 . . . 4 (𝜑 → ∀𝑥𝑉 [𝑥] ∈ V)
5 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
65fnmpt 6661 . . . 4 (∀𝑥𝑉 [𝑥] ∈ V → 𝐹 Fn 𝑉)
74, 6syl 17 . . 3 (𝜑𝐹 Fn 𝑉)
8 dffn4 6781 . . 3 (𝐹 Fn 𝑉𝐹:𝑉onto→ran 𝐹)
97, 8sylib 218 . 2 (𝜑𝐹:𝑉onto→ran 𝐹)
105rnmpt 5924 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
11 df-qs 8680 . . . 4 (𝑉 / ) = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
1210, 11eqtr4i 2756 . . 3 ran 𝐹 = (𝑉 / )
13 foeq3 6773 . . 3 (ran 𝐹 = (𝑉 / ) → (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / )))
1412, 13ax-mp 5 . 2 (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / ))
159, 14sylib 218 1 (𝜑𝐹:𝑉onto→(𝑉 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cmpt 5191  ran crn 5642   Fn wfn 6509  ontowfo 6512  cfv 6514  (class class class)co 7390  [cec 8672   / cqs 8673  Basecbs 17186   /s cqus 17475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-fo 6520  df-ec 8676  df-qs 8680
This theorem is referenced by:  qusbas  17515  quss  17516  qusaddvallem  17521  qusaddflem  17522  qusaddval  17523  qusaddf  17524  qusmulval  17525  qusmulf  17526  qusgrp2  18997  qusrng  20096  qusring2  20250  znzrhfo  21464  qustps  23616  qustgpopn  24014  qustgplem  24015  qustgphaus  24017  qusker  33327  qusvsval  33330  quslmod  33336  quslmhm  33337  qusdimsum  33631
  Copyright terms: Public domain W3C validator