| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quslem | Structured version Visualization version GIF version | ||
| Description: The function in qusval 17481 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 2 | ecexg 8652 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
| 4 | 3 | ralrimivw 3129 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
| 5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 6 | 5 | fnmpt 6640 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 8 | dffn4 6760 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
| 10 | 5 | rnmpt 5910 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
| 11 | df-qs 8654 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
| 12 | 10, 11 | eqtr4i 2755 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
| 13 | foeq3 6752 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| 15 | 9, 14 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ↦ cmpt 5183 ran crn 5632 Fn wfn 6494 –onto→wfo 6497 ‘cfv 6499 (class class class)co 7369 [cec 8646 / cqs 8647 Basecbs 17155 /s cqus 17444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-fo 6505 df-ec 8650 df-qs 8654 |
| This theorem is referenced by: qusbas 17484 quss 17485 qusaddvallem 17490 qusaddflem 17491 qusaddval 17492 qusaddf 17493 qusmulval 17494 qusmulf 17495 qusgrp2 18966 qusrng 20065 qusring2 20219 znzrhfo 21433 qustps 23585 qustgpopn 23983 qustgplem 23984 qustgphaus 23986 qusker 33293 qusvsval 33296 quslmod 33302 quslmhm 33303 qusdimsum 33597 |
| Copyright terms: Public domain | W3C validator |