| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quslem | Structured version Visualization version GIF version | ||
| Description: The function in qusval 17512 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 2 | ecexg 8678 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
| 4 | 3 | ralrimivw 3130 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
| 5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 6 | 5 | fnmpt 6661 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 8 | dffn4 6781 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
| 10 | 5 | rnmpt 5924 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
| 11 | df-qs 8680 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
| 12 | 10, 11 | eqtr4i 2756 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
| 13 | foeq3 6773 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| 15 | 9, 14 | sylib 218 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ↦ cmpt 5191 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 [cec 8672 / cqs 8673 Basecbs 17186 /s cqus 17475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-fo 6520 df-ec 8676 df-qs 8680 |
| This theorem is referenced by: qusbas 17515 quss 17516 qusaddvallem 17521 qusaddflem 17522 qusaddval 17523 qusaddf 17524 qusmulval 17525 qusmulf 17526 qusgrp2 18997 qusrng 20096 qusring2 20250 znzrhfo 21464 qustps 23616 qustgpopn 24014 qustgplem 24015 qustgphaus 24017 qusker 33327 qusvsval 33330 quslmod 33336 quslmhm 33337 qusdimsum 33631 |
| Copyright terms: Public domain | W3C validator |