MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quslem Structured version   Visualization version   GIF version

Theorem quslem 17603
Description: The function in qusval 17602 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
quslem (𝜑𝐹:𝑉onto→(𝑉 / ))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem quslem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6 (𝜑𝑊)
2 ecexg 8767 . . . . . 6 ( 𝑊 → [𝑥] ∈ V)
31, 2syl 17 . . . . 5 (𝜑 → [𝑥] ∈ V)
43ralrimivw 3156 . . . 4 (𝜑 → ∀𝑥𝑉 [𝑥] ∈ V)
5 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
65fnmpt 6720 . . . 4 (∀𝑥𝑉 [𝑥] ∈ V → 𝐹 Fn 𝑉)
74, 6syl 17 . . 3 (𝜑𝐹 Fn 𝑉)
8 dffn4 6840 . . 3 (𝐹 Fn 𝑉𝐹:𝑉onto→ran 𝐹)
97, 8sylib 218 . 2 (𝜑𝐹:𝑉onto→ran 𝐹)
105rnmpt 5980 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
11 df-qs 8769 . . . 4 (𝑉 / ) = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
1210, 11eqtr4i 2771 . . 3 ran 𝐹 = (𝑉 / )
13 foeq3 6832 . . 3 (ran 𝐹 = (𝑉 / ) → (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / )))
1412, 13ax-mp 5 . 2 (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / ))
159, 14sylib 218 1 (𝜑𝐹:𝑉onto→(𝑉 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cmpt 5249  ran crn 5701   Fn wfn 6568  ontowfo 6571  cfv 6573  (class class class)co 7448  [cec 8761   / cqs 8762  Basecbs 17258   /s cqus 17565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-fo 6579  df-ec 8765  df-qs 8769
This theorem is referenced by:  qusbas  17605  quss  17606  qusaddvallem  17611  qusaddflem  17612  qusaddval  17613  qusaddf  17614  qusmulval  17615  qusmulf  17616  qusgrp2  19098  qusrng  20207  qusring2  20357  znzrhfo  21589  qustps  23751  qustgpopn  24149  qustgplem  24150  qustgphaus  24152  qusker  33342  qusvsval  33345  quslmod  33351  quslmhm  33352  qusdimsum  33641
  Copyright terms: Public domain W3C validator