![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qus0subgbas | Structured version Visualization version GIF version |
Description: The base set of a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025.) |
Ref | Expression |
---|---|
qus0subg.0 | ⊢ 0 = (0g‘𝐺) |
qus0subg.s | ⊢ 𝑆 = { 0 } |
qus0subg.e | ⊢ ∼ = (𝐺 ~QG 𝑆) |
qus0subg.u | ⊢ 𝑈 = (𝐺 /s ∼ ) |
qus0subg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
qus0subgbas | ⊢ (𝐺 ∈ Grp → (Base‘𝑈) = {𝑢 ∣ ∃𝑥 ∈ 𝐵 𝑢 = {𝑥}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8705 | . 2 ⊢ (𝐵 / ∼ ) = {𝑢 ∣ ∃𝑥 ∈ 𝐵 𝑢 = [𝑥] ∼ } | |
2 | qus0subg.u | . . . 4 ⊢ 𝑈 = (𝐺 /s ∼ ) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑈 = (𝐺 /s ∼ )) |
4 | qus0subg.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) |
6 | qus0subg.e | . . . . 5 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
7 | 6 | ovexi 7435 | . . . 4 ⊢ ∼ ∈ V |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → ∼ ∈ V) |
9 | id 22 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
10 | 3, 5, 8, 9 | qusbas 17490 | . 2 ⊢ (𝐺 ∈ Grp → (𝐵 / ∼ ) = (Base‘𝑈)) |
11 | qus0subg.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
12 | qus0subg.s | . . . . . 6 ⊢ 𝑆 = { 0 } | |
13 | 11, 12, 4, 6 | eqg0subgecsn 19113 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = {𝑥}) |
14 | 13 | eqeq2d 2735 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑢 = [𝑥] ∼ ↔ 𝑢 = {𝑥})) |
15 | 14 | rexbidva 3168 | . . 3 ⊢ (𝐺 ∈ Grp → (∃𝑥 ∈ 𝐵 𝑢 = [𝑥] ∼ ↔ ∃𝑥 ∈ 𝐵 𝑢 = {𝑥})) |
16 | 15 | abbidv 2793 | . 2 ⊢ (𝐺 ∈ Grp → {𝑢 ∣ ∃𝑥 ∈ 𝐵 𝑢 = [𝑥] ∼ } = {𝑢 ∣ ∃𝑥 ∈ 𝐵 𝑢 = {𝑥}}) |
17 | 1, 10, 16 | 3eqtr3a 2788 | 1 ⊢ (𝐺 ∈ Grp → (Base‘𝑈) = {𝑢 ∣ ∃𝑥 ∈ 𝐵 𝑢 = {𝑥}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 ∃wrex 3062 Vcvv 3466 {csn 4620 ‘cfv 6533 (class class class)co 7401 [cec 8697 / cqs 8698 Basecbs 17143 0gc0g 17384 /s cqus 17450 Grpcgrp 18853 ~QG cqg 19039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-ec 8701 df-qs 8705 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17386 df-imas 17453 df-qus 17454 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-subg 19040 df-eqg 19042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |