MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cof Structured version   Visualization version   GIF version

Theorem pi1cof 24957
Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1cof (𝜑𝐺:𝑉⟶(Base‘𝑄))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1cof
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.g . . . 4 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
2 fvex 6835 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 8629 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝑉) → [𝑔]( ≃ph𝐽) ∈ V)
5 pi1co.q . . . . 5 𝑄 = (𝐾 π1 𝐵)
6 eqid 2729 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
7 pi1co.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
8 cntop2 23126 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
97, 8syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
10 toptopon2 22803 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
119, 10sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
1211adantr 480 . . . . 5 ((𝜑𝑔 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
13 pi1co.b . . . . . . 7 (𝜑 → (𝐹𝐴) = 𝐵)
14 pi1co.j . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 cnf2 23134 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋 𝐾)
1614, 11, 7, 15syl3anc 1373 . . . . . . . 8 (𝜑𝐹:𝑋 𝐾)
17 pi1co.a . . . . . . . 8 (𝜑𝐴𝑋)
1816, 17ffvelcdmd 7019 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝐾)
1913, 18eqeltrrd 2829 . . . . . 6 (𝜑𝐵 𝐾)
2019adantr 480 . . . . 5 ((𝜑𝑔 𝑉) → 𝐵 𝐾)
21 pi1co.p . . . . . . . . 9 𝑃 = (𝐽 π1 𝐴)
22 pi1co.v . . . . . . . . . 10 𝑉 = (Base‘𝑃)
2322a1i 11 . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑃))
2421, 14, 17, 23pi1eluni 24940 . . . . . . . 8 (𝜑 → (𝑔 𝑉 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴)))
2524biimpa 476 . . . . . . 7 ((𝜑𝑔 𝑉) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴))
2625simp1d 1142 . . . . . 6 ((𝜑𝑔 𝑉) → 𝑔 ∈ (II Cn 𝐽))
277adantr 480 . . . . . 6 ((𝜑𝑔 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
28 cnco 23151 . . . . . 6 ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑔) ∈ (II Cn 𝐾))
2926, 27, 28syl2anc 584 . . . . 5 ((𝜑𝑔 𝑉) → (𝐹𝑔) ∈ (II Cn 𝐾))
30 iitopon 24770 . . . . . . . 8 II ∈ (TopOn‘(0[,]1))
31 cnf2 23134 . . . . . . . 8 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (II Cn 𝐽)) → 𝑔:(0[,]1)⟶𝑋)
3230, 14, 26, 31mp3an2ani 1470 . . . . . . 7 ((𝜑𝑔 𝑉) → 𝑔:(0[,]1)⟶𝑋)
33 0elunit 13372 . . . . . . 7 0 ∈ (0[,]1)
34 fvco3 6922 . . . . . . 7 ((𝑔:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
3532, 33, 34sylancl 586 . . . . . 6 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
3625simp2d 1143 . . . . . . 7 ((𝜑𝑔 𝑉) → (𝑔‘0) = 𝐴)
3736fveq2d 6826 . . . . . 6 ((𝜑𝑔 𝑉) → (𝐹‘(𝑔‘0)) = (𝐹𝐴))
3813adantr 480 . . . . . 6 ((𝜑𝑔 𝑉) → (𝐹𝐴) = 𝐵)
3935, 37, 383eqtrd 2768 . . . . 5 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘0) = 𝐵)
40 1elunit 13373 . . . . . . 7 1 ∈ (0[,]1)
41 fvco3 6922 . . . . . . 7 ((𝑔:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
4232, 40, 41sylancl 586 . . . . . 6 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
4325simp3d 1144 . . . . . . 7 ((𝜑𝑔 𝑉) → (𝑔‘1) = 𝐴)
4443fveq2d 6826 . . . . . 6 ((𝜑𝑔 𝑉) → (𝐹‘(𝑔‘1)) = (𝐹𝐴))
4542, 44, 383eqtrd 2768 . . . . 5 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘1) = 𝐵)
465, 6, 12, 20, 29, 39, 45elpi1i 24944 . . . 4 ((𝜑𝑔 𝑉) → [(𝐹𝑔)]( ≃ph𝐾) ∈ (Base‘𝑄))
47 eceq1 8664 . . . 4 (𝑔 = → [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))
48 coeq2 5801 . . . . 5 (𝑔 = → (𝐹𝑔) = (𝐹))
4948eceq1d 8665 . . . 4 (𝑔 = → [(𝐹𝑔)]( ≃ph𝐾) = [(𝐹)]( ≃ph𝐾))
50 phtpcer 24892 . . . . . 6 ( ≃ph𝐾) Er (II Cn 𝐾)
5150a1i 11 . . . . 5 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → ( ≃ph𝐾) Er (II Cn 𝐾))
52 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))
53 phtpcer 24892 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
5453a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → ( ≃ph𝐽) Er (II Cn 𝐽))
55 simpr1 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔 𝑉)
5624adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔 𝑉 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴)))
5755, 56mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴))
5857simp1d 1142 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔 ∈ (II Cn 𝐽))
5954, 58erth 8679 . . . . . . 7 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔( ≃ph𝐽) ↔ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽)))
6052, 59mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔( ≃ph𝐽))
617adantr 480 . . . . . 6 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾))
6260, 61phtpcco2 24897 . . . . 5 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝐹𝑔)( ≃ph𝐾)(𝐹))
6351, 62erthi 8681 . . . 4 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → [(𝐹𝑔)]( ≃ph𝐾) = [(𝐹)]( ≃ph𝐾))
641, 4, 46, 47, 49, 63fliftfund 7250 . . 3 (𝜑 → Fun 𝐺)
651, 4, 46fliftf 7252 . . 3 (𝜑 → (Fun 𝐺𝐺:ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄)))
6664, 65mpbid 232 . 2 (𝜑𝐺:ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄))
6721, 14, 17, 23pi1bas2 24939 . . . 4 (𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽)))
68 df-qs 8631 . . . . 5 ( 𝑉 / ( ≃ph𝐽)) = {𝑠 ∣ ∃𝑔 𝑉𝑠 = [𝑔]( ≃ph𝐽)}
69 eqid 2729 . . . . . 6 (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽)) = (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))
7069rnmpt 5899 . . . . 5 ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽)) = {𝑠 ∣ ∃𝑔 𝑉𝑠 = [𝑔]( ≃ph𝐽)}
7168, 70eqtr4i 2755 . . . 4 ( 𝑉 / ( ≃ph𝐽)) = ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))
7267, 71eqtrdi 2780 . . 3 (𝜑𝑉 = ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽)))
7372feq2d 6636 . 2 (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ↔ 𝐺:ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄)))
7466, 73mpbird 257 1 (𝜑𝐺:𝑉⟶(Base‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3436  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  ccom 5623  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349   Er wer 8622  [cec 8623   / cqs 8624  0cc0 11009  1c1 11010  [,]cicc 13251  Basecbs 17120  Topctop 22778  TopOnctopon 22795   Cn ccn 23109  IIcii 24766  phcphtpc 24866   π1 cpi1 24901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-ii 24768  df-htpy 24867  df-phtpy 24868  df-phtpc 24889  df-om1 24904  df-pi1 24906
This theorem is referenced by:  pi1coval  24958  pi1coghm  24959
  Copyright terms: Public domain W3C validator