MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cof Structured version   Visualization version   GIF version

Theorem pi1cof 23078
Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1cof (𝜑𝐺:𝑉⟶(Base‘𝑄))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1cof
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.g . . . 4 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
2 fvex 6342 . . . . 5 ( ≃ph𝐽) ∈ V
3 ecexg 7900 . . . . 5 (( ≃ph𝐽) ∈ V → [𝑔]( ≃ph𝐽) ∈ V)
42, 3mp1i 13 . . . 4 ((𝜑𝑔 𝑉) → [𝑔]( ≃ph𝐽) ∈ V)
5 pi1co.q . . . . 5 𝑄 = (𝐾 π1 𝐵)
6 eqid 2771 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
7 pi1co.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
8 cntop2 21266 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
97, 8syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
10 eqid 2771 . . . . . . . 8 𝐾 = 𝐾
1110toptopon 20942 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
129, 11sylib 208 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
1312adantr 466 . . . . 5 ((𝜑𝑔 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
14 pi1co.b . . . . . . 7 (𝜑 → (𝐹𝐴) = 𝐵)
15 pi1co.j . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 cnf2 21274 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋 𝐾)
1715, 12, 7, 16syl3anc 1476 . . . . . . . 8 (𝜑𝐹:𝑋 𝐾)
18 pi1co.a . . . . . . . 8 (𝜑𝐴𝑋)
1917, 18ffvelrnd 6503 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝐾)
2014, 19eqeltrrd 2851 . . . . . 6 (𝜑𝐵 𝐾)
2120adantr 466 . . . . 5 ((𝜑𝑔 𝑉) → 𝐵 𝐾)
22 pi1co.p . . . . . . . . 9 𝑃 = (𝐽 π1 𝐴)
23 pi1co.v . . . . . . . . . 10 𝑉 = (Base‘𝑃)
2423a1i 11 . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑃))
2522, 15, 18, 24pi1eluni 23061 . . . . . . . 8 (𝜑 → (𝑔 𝑉 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴)))
2625biimpa 462 . . . . . . 7 ((𝜑𝑔 𝑉) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴))
2726simp1d 1136 . . . . . 6 ((𝜑𝑔 𝑉) → 𝑔 ∈ (II Cn 𝐽))
287adantr 466 . . . . . 6 ((𝜑𝑔 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
29 cnco 21291 . . . . . 6 ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑔) ∈ (II Cn 𝐾))
3027, 28, 29syl2anc 573 . . . . 5 ((𝜑𝑔 𝑉) → (𝐹𝑔) ∈ (II Cn 𝐾))
31 iitopon 22902 . . . . . . . . 9 II ∈ (TopOn‘(0[,]1))
3231a1i 11 . . . . . . . 8 ((𝜑𝑔 𝑉) → II ∈ (TopOn‘(0[,]1)))
3315adantr 466 . . . . . . . 8 ((𝜑𝑔 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
34 cnf2 21274 . . . . . . . 8 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (II Cn 𝐽)) → 𝑔:(0[,]1)⟶𝑋)
3532, 33, 27, 34syl3anc 1476 . . . . . . 7 ((𝜑𝑔 𝑉) → 𝑔:(0[,]1)⟶𝑋)
36 0elunit 12497 . . . . . . 7 0 ∈ (0[,]1)
37 fvco3 6417 . . . . . . 7 ((𝑔:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
3835, 36, 37sylancl 574 . . . . . 6 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘0) = (𝐹‘(𝑔‘0)))
3926simp2d 1137 . . . . . . 7 ((𝜑𝑔 𝑉) → (𝑔‘0) = 𝐴)
4039fveq2d 6336 . . . . . 6 ((𝜑𝑔 𝑉) → (𝐹‘(𝑔‘0)) = (𝐹𝐴))
4114adantr 466 . . . . . 6 ((𝜑𝑔 𝑉) → (𝐹𝐴) = 𝐵)
4238, 40, 413eqtrd 2809 . . . . 5 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘0) = 𝐵)
43 1elunit 12498 . . . . . . 7 1 ∈ (0[,]1)
44 fvco3 6417 . . . . . . 7 ((𝑔:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
4535, 43, 44sylancl 574 . . . . . 6 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘1) = (𝐹‘(𝑔‘1)))
4626simp3d 1138 . . . . . . 7 ((𝜑𝑔 𝑉) → (𝑔‘1) = 𝐴)
4746fveq2d 6336 . . . . . 6 ((𝜑𝑔 𝑉) → (𝐹‘(𝑔‘1)) = (𝐹𝐴))
4845, 47, 413eqtrd 2809 . . . . 5 ((𝜑𝑔 𝑉) → ((𝐹𝑔)‘1) = 𝐵)
495, 6, 13, 21, 30, 42, 48elpi1i 23065 . . . 4 ((𝜑𝑔 𝑉) → [(𝐹𝑔)]( ≃ph𝐾) ∈ (Base‘𝑄))
50 eceq1 7934 . . . 4 (𝑔 = → [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))
51 coeq2 5419 . . . . 5 (𝑔 = → (𝐹𝑔) = (𝐹))
5251eceq1d 7935 . . . 4 (𝑔 = → [(𝐹𝑔)]( ≃ph𝐾) = [(𝐹)]( ≃ph𝐾))
53 phtpcer 23014 . . . . . 6 ( ≃ph𝐾) Er (II Cn 𝐾)
5453a1i 11 . . . . 5 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → ( ≃ph𝐾) Er (II Cn 𝐾))
55 simpr3 1237 . . . . . . 7 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))
56 phtpcer 23014 . . . . . . . . 9 ( ≃ph𝐽) Er (II Cn 𝐽)
5756a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → ( ≃ph𝐽) Er (II Cn 𝐽))
58 simpr1 1233 . . . . . . . . . 10 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔 𝑉)
5925adantr 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔 𝑉 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴)))
6058, 59mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴))
6160simp1d 1136 . . . . . . . 8 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔 ∈ (II Cn 𝐽))
6257, 61erth 7943 . . . . . . 7 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝑔( ≃ph𝐽) ↔ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽)))
6355, 62mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝑔( ≃ph𝐽))
647adantr 466 . . . . . 6 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾))
6563, 64phtpcco2 23018 . . . . 5 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → (𝐹𝑔)( ≃ph𝐾)(𝐹))
6654, 65erthi 7945 . . . 4 ((𝜑 ∧ (𝑔 𝑉 𝑉 ∧ [𝑔]( ≃ph𝐽) = []( ≃ph𝐽))) → [(𝐹𝑔)]( ≃ph𝐾) = [(𝐹)]( ≃ph𝐾))
671, 4, 49, 50, 52, 66fliftfund 6706 . . 3 (𝜑 → Fun 𝐺)
681, 4, 49fliftf 6708 . . 3 (𝜑 → (Fun 𝐺𝐺:ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄)))
6967, 68mpbid 222 . 2 (𝜑𝐺:ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄))
7022, 15, 18, 24pi1bas2 23060 . . . 4 (𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽)))
71 df-qs 7902 . . . . 5 ( 𝑉 / ( ≃ph𝐽)) = {𝑠 ∣ ∃𝑔 𝑉𝑠 = [𝑔]( ≃ph𝐽)}
72 eqid 2771 . . . . . 6 (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽)) = (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))
7372rnmpt 5509 . . . . 5 ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽)) = {𝑠 ∣ ∃𝑔 𝑉𝑠 = [𝑔]( ≃ph𝐽)}
7471, 73eqtr4i 2796 . . . 4 ( 𝑉 / ( ≃ph𝐽)) = ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))
7570, 74syl6eq 2821 . . 3 (𝜑𝑉 = ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽)))
7675feq2d 6171 . 2 (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ↔ 𝐺:ran (𝑔 𝑉 ↦ [𝑔]( ≃ph𝐽))⟶(Base‘𝑄)))
7769, 76mpbird 247 1 (𝜑𝐺:𝑉⟶(Base‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wrex 3062  Vcvv 3351  cop 4322   cuni 4574   class class class wbr 4786  cmpt 4863  ran crn 5250  ccom 5253  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6793   Er wer 7893  [cec 7894   / cqs 7895  0cc0 10138  1c1 10139  [,]cicc 12383  Basecbs 16064  Topctop 20918  TopOnctopon 20935   Cn ccn 21249  IIcii 22898  phcphtpc 22988   π1 cpi1 23022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-qus 16377  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-ii 22900  df-htpy 22989  df-phtpy 22990  df-phtpc 23011  df-om1 23025  df-pi1 23027
This theorem is referenced by:  pi1coval  23079  pi1coghm  23080
  Copyright terms: Public domain W3C validator