| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfssf | Structured version Visualization version GIF version | ||
| Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2374. (Revised by GG, 19-May-2023.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| dfssf | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3915 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) | |
| 2 | dfssf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 4 | dfssf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfim 1897 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) |
| 7 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
| 8 | eleq1w 2816 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 9 | eleq1w 2816 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 10 | 8, 9 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
| 11 | 6, 7, 10 | cbvalv1 2343 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2113 Ⅎwnfc 2880 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2808 df-nfc 2882 df-ss 3915 |
| This theorem is referenced by: dfss3f 3922 ssrd 3935 ssrmof 3998 ss2ab 4010 rankval4 9769 rabexgfGS 32483 ballotth 34574 rankval4b 35134 dvcosre 46037 itgsinexplem1 46079 |
| Copyright terms: Public domain | W3C validator |