MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfssf Structured version   Visualization version   GIF version

Theorem dfssf 3928
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2370. (Revised by GG, 19-May-2023.)
Hypotheses
Ref Expression
dfssf.1 𝑥𝐴
dfssf.2 𝑥𝐵
Assertion
Ref Expression
dfssf (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem dfssf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3922 . 2 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 dfssf.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑧𝐴
4 dfssf.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑧𝐵
63, 5nfim 1896 . . 3 𝑥(𝑧𝐴𝑧𝐵)
7 nfv 1914 . . 3 𝑧(𝑥𝐴𝑥𝐵)
8 eleq1w 2811 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1w 2811 . . . 4 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
108, 9imbi12d 344 . . 3 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) ↔ (𝑥𝐴𝑥𝐵)))
116, 7, 10cbvalv1 2339 . 2 (∀𝑧(𝑧𝐴𝑧𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
121, 11bitri 275 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wnfc 2876  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-clel 2803  df-nfc 2878  df-ss 3922
This theorem is referenced by:  dfss3f  3929  ssrd  3942  ssrmof  4005  ss2ab  4016  rankval4  9782  rabexgfGS  32461  ballotth  34508  dvcosre  45897  itgsinexplem1  45939
  Copyright terms: Public domain W3C validator