MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfssf Structured version   Visualization version   GIF version

Theorem dfssf 3925
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2372. (Revised by GG, 19-May-2023.)
Hypotheses
Ref Expression
dfssf.1 𝑥𝐴
dfssf.2 𝑥𝐵
Assertion
Ref Expression
dfssf (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem dfssf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3919 . 2 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 dfssf.1 . . . . 5 𝑥𝐴
32nfcri 2886 . . . 4 𝑥 𝑧𝐴
4 dfssf.2 . . . . 5 𝑥𝐵
54nfcri 2886 . . . 4 𝑥 𝑧𝐵
63, 5nfim 1897 . . 3 𝑥(𝑧𝐴𝑧𝐵)
7 nfv 1915 . . 3 𝑧(𝑥𝐴𝑥𝐵)
8 eleq1w 2814 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1w 2814 . . . 4 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
108, 9imbi12d 344 . . 3 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) ↔ (𝑥𝐴𝑥𝐵)))
116, 7, 10cbvalv1 2341 . 2 (∀𝑧(𝑧𝐴𝑧𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
121, 11bitri 275 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2111  wnfc 2879  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-clel 2806  df-nfc 2881  df-ss 3919
This theorem is referenced by:  dfss3f  3926  ssrd  3939  ssrmof  4002  ss2ab  4013  rankval4  9760  rabexgfGS  32477  ballotth  34549  rankval4b  35109  dvcosre  45956  itgsinexplem1  45998
  Copyright terms: Public domain W3C validator