Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosre Structured version   Visualization version   GIF version

Theorem dvcosre 45897
Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
dvcosre (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))

Proof of Theorem dvcosre
StepHypRef Expression
1 reelprrecn 11101 . . 3 ℝ ∈ {ℝ, ℂ}
2 cosf 16034 . . 3 cos:ℂ⟶ℂ
3 ssid 3958 . . 3 ℂ ⊆ ℂ
4 nfcv 2891 . . . . . 6 𝑥
5 nfrab1 3415 . . . . . 6 𝑥{𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}
64, 5dfssf 3926 . . . . 5 (ℝ ⊆ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}))
7 recn 11099 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87sincld 16039 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
98negcld 11462 . . . . . . 7 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
10 elex 3457 . . . . . . 7 (-(sin‘𝑥) ∈ ℂ → -(sin‘𝑥) ∈ V)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ V)
12 rabid 3416 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} ↔ (𝑥 ∈ ℂ ∧ -(sin‘𝑥) ∈ V))
137, 11, 12sylanbrc 583 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V})
146, 13mpgbir 1799 . . . 4 ℝ ⊆ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}
15 dvcos 25885 . . . . 5 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1615dmmpt 6189 . . . 4 dom (ℂ D cos) = {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}
1714, 16sseqtrri 3985 . . 3 ℝ ⊆ dom (ℂ D cos)
18 dvres3 25812 . . 3 (((ℝ ∈ {ℝ, ℂ} ∧ cos:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D cos))) → (ℝ D (cos ↾ ℝ)) = ((ℂ D cos) ↾ ℝ))
191, 2, 3, 17, 18mp4an 693 . 2 (ℝ D (cos ↾ ℝ)) = ((ℂ D cos) ↾ ℝ)
20 ffn 6652 . . . . . . 7 (cos:ℂ⟶ℂ → cos Fn ℂ)
212, 20ax-mp 5 . . . . . 6 cos Fn ℂ
22 dffn5 6881 . . . . . 6 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
2321, 22mpbi 230 . . . . 5 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
2423reseq1i 5926 . . . 4 (cos ↾ ℝ) = ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ)
25 ax-resscn 11066 . . . . 5 ℝ ⊆ ℂ
26 resmpt 5988 . . . . 5 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥)))
2725, 26ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))
2824, 27eqtri 2752 . . 3 (cos ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))
2928oveq2i 7360 . 2 (ℝ D (cos ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥)))
3015reseq1i 5926 . . 3 ((ℂ D cos) ↾ ℝ) = ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ)
31 resmpt 5988 . . . 4 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3225, 31ax-mp 5 . . 3 ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3330, 32eqtri 2752 . 2 ((ℂ D cos) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3419, 29, 333eqtr3i 2760 1 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  wss 3903  {cpr 4579  cmpt 5173  dom cdm 5619  cres 5621   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  -cneg 11348  sincsin 15970  cosccos 15971   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  itgsin0pilem1  45935  itgsinexplem1  45939  fourierdlem39  46131
  Copyright terms: Public domain W3C validator