![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvcosre | Structured version Visualization version GIF version |
Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
dvcosre | ⊢ (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 10351 | . . 3 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | cosf 15234 | . . 3 ⊢ cos:ℂ⟶ℂ | |
3 | ssid 3848 | . . 3 ⊢ ℂ ⊆ ℂ | |
4 | nfcv 2969 | . . . . . 6 ⊢ Ⅎ𝑥ℝ | |
5 | nfrab1 3333 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} | |
6 | 4, 5 | dfss2f 3818 | . . . . 5 ⊢ (ℝ ⊆ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V})) |
7 | recn 10349 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
8 | 7 | sincld 15239 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ) |
9 | 8 | negcld 10707 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ) |
10 | elex 3429 | . . . . . . 7 ⊢ (-(sin‘𝑥) ∈ ℂ → -(sin‘𝑥) ∈ V) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ V) |
12 | rabid 3326 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} ↔ (𝑥 ∈ ℂ ∧ -(sin‘𝑥) ∈ V)) | |
13 | 7, 11, 12 | sylanbrc 578 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}) |
14 | 6, 13 | mpgbir 1898 | . . . 4 ⊢ ℝ ⊆ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} |
15 | dvcos 24152 | . . . . 5 ⊢ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) | |
16 | 15 | dmmpt 5875 | . . . 4 ⊢ dom (ℂ D cos) = {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} |
17 | 14, 16 | sseqtr4i 3863 | . . 3 ⊢ ℝ ⊆ dom (ℂ D cos) |
18 | dvres3 24083 | . . 3 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ cos:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D cos))) → (ℝ D (cos ↾ ℝ)) = ((ℂ D cos) ↾ ℝ)) | |
19 | 1, 2, 3, 17, 18 | mp4an 684 | . 2 ⊢ (ℝ D (cos ↾ ℝ)) = ((ℂ D cos) ↾ ℝ) |
20 | ffn 6282 | . . . . . . 7 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
21 | 2, 20 | ax-mp 5 | . . . . . 6 ⊢ cos Fn ℂ |
22 | dffn5 6492 | . . . . . 6 ⊢ (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) | |
23 | 21, 22 | mpbi 222 | . . . . 5 ⊢ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)) |
24 | 23 | reseq1i 5629 | . . . 4 ⊢ (cos ↾ ℝ) = ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) |
25 | ax-resscn 10316 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
26 | resmpt 5690 | . . . . 5 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))) | |
27 | 25, 26 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥)) |
28 | 24, 27 | eqtri 2849 | . . 3 ⊢ (cos ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥)) |
29 | 28 | oveq2i 6921 | . 2 ⊢ (ℝ D (cos ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) |
30 | 15 | reseq1i 5629 | . . 3 ⊢ ((ℂ D cos) ↾ ℝ) = ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) |
31 | resmpt 5690 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))) | |
32 | 25, 31 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)) |
33 | 30, 32 | eqtri 2849 | . 2 ⊢ ((ℂ D cos) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)) |
34 | 19, 29, 33 | 3eqtr3i 2857 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 {crab 3121 Vcvv 3414 ⊆ wss 3798 {cpr 4401 ↦ cmpt 4954 dom cdm 5346 ↾ cres 5348 Fn wfn 6122 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 ℝcr 10258 -cneg 10593 sincsin 15173 cosccos 15174 D cdv 24033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-fac 13361 df-bc 13390 df-hash 13418 df-shft 14191 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-limsup 14586 df-clim 14603 df-rlim 14604 df-sum 14801 df-ef 15177 df-sin 15179 df-cos 15180 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-hom 16336 df-cco 16337 df-rest 16443 df-topn 16444 df-0g 16462 df-gsum 16463 df-topgen 16464 df-pt 16465 df-prds 16468 df-xrs 16522 df-qtop 16527 df-imas 16528 df-xps 16530 df-mre 16606 df-mrc 16607 df-acs 16609 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-submnd 17696 df-mulg 17902 df-cntz 18107 df-cmn 18555 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-fbas 20110 df-fg 20111 df-cnfld 20114 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cld 21201 df-ntr 21202 df-cls 21203 df-nei 21280 df-lp 21318 df-perf 21319 df-cn 21409 df-cnp 21410 df-haus 21497 df-tx 21743 df-hmeo 21936 df-fil 22027 df-fm 22119 df-flim 22120 df-flf 22121 df-xms 22502 df-ms 22503 df-tms 22504 df-cncf 23058 df-limc 24036 df-dv 24037 |
This theorem is referenced by: itgsin0pilem1 40958 itgsinexplem1 40962 fourierdlem39 41155 |
Copyright terms: Public domain | W3C validator |