![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvcosre | Structured version Visualization version GIF version |
Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
dvcosre | β’ (β D (π₯ β β β¦ (cosβπ₯))) = (π₯ β β β¦ -(sinβπ₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 11236 | . . 3 β’ β β {β, β} | |
2 | cosf 16107 | . . 3 β’ cos:ββΆβ | |
3 | ssid 4002 | . . 3 β’ β β β | |
4 | nfcv 2898 | . . . . . 6 β’ β²π₯β | |
5 | nfrab1 3448 | . . . . . 6 β’ β²π₯{π₯ β β β£ -(sinβπ₯) β V} | |
6 | 4, 5 | dfss2f 3970 | . . . . 5 β’ (β β {π₯ β β β£ -(sinβπ₯) β V} β βπ₯(π₯ β β β π₯ β {π₯ β β β£ -(sinβπ₯) β V})) |
7 | recn 11234 | . . . . . 6 β’ (π₯ β β β π₯ β β) | |
8 | 7 | sincld 16112 | . . . . . . . 8 β’ (π₯ β β β (sinβπ₯) β β) |
9 | 8 | negcld 11594 | . . . . . . 7 β’ (π₯ β β β -(sinβπ₯) β β) |
10 | elex 3490 | . . . . . . 7 β’ (-(sinβπ₯) β β β -(sinβπ₯) β V) | |
11 | 9, 10 | syl 17 | . . . . . 6 β’ (π₯ β β β -(sinβπ₯) β V) |
12 | rabid 3449 | . . . . . 6 β’ (π₯ β {π₯ β β β£ -(sinβπ₯) β V} β (π₯ β β β§ -(sinβπ₯) β V)) | |
13 | 7, 11, 12 | sylanbrc 581 | . . . . 5 β’ (π₯ β β β π₯ β {π₯ β β β£ -(sinβπ₯) β V}) |
14 | 6, 13 | mpgbir 1793 | . . . 4 β’ β β {π₯ β β β£ -(sinβπ₯) β V} |
15 | dvcos 25933 | . . . . 5 β’ (β D cos) = (π₯ β β β¦ -(sinβπ₯)) | |
16 | 15 | dmmpt 6247 | . . . 4 β’ dom (β D cos) = {π₯ β β β£ -(sinβπ₯) β V} |
17 | 14, 16 | sseqtrri 4017 | . . 3 β’ β β dom (β D cos) |
18 | dvres3 25860 | . . 3 β’ (((β β {β, β} β§ cos:ββΆβ) β§ (β β β β§ β β dom (β D cos))) β (β D (cos βΎ β)) = ((β D cos) βΎ β)) | |
19 | 1, 2, 3, 17, 18 | mp4an 691 | . 2 β’ (β D (cos βΎ β)) = ((β D cos) βΎ β) |
20 | ffn 6725 | . . . . . . 7 β’ (cos:ββΆβ β cos Fn β) | |
21 | 2, 20 | ax-mp 5 | . . . . . 6 β’ cos Fn β |
22 | dffn5 6960 | . . . . . 6 β’ (cos Fn β β cos = (π₯ β β β¦ (cosβπ₯))) | |
23 | 21, 22 | mpbi 229 | . . . . 5 β’ cos = (π₯ β β β¦ (cosβπ₯)) |
24 | 23 | reseq1i 5983 | . . . 4 β’ (cos βΎ β) = ((π₯ β β β¦ (cosβπ₯)) βΎ β) |
25 | ax-resscn 11201 | . . . . 5 β’ β β β | |
26 | resmpt 6044 | . . . . 5 β’ (β β β β ((π₯ β β β¦ (cosβπ₯)) βΎ β) = (π₯ β β β¦ (cosβπ₯))) | |
27 | 25, 26 | ax-mp 5 | . . . 4 β’ ((π₯ β β β¦ (cosβπ₯)) βΎ β) = (π₯ β β β¦ (cosβπ₯)) |
28 | 24, 27 | eqtri 2755 | . . 3 β’ (cos βΎ β) = (π₯ β β β¦ (cosβπ₯)) |
29 | 28 | oveq2i 7435 | . 2 β’ (β D (cos βΎ β)) = (β D (π₯ β β β¦ (cosβπ₯))) |
30 | 15 | reseq1i 5983 | . . 3 β’ ((β D cos) βΎ β) = ((π₯ β β β¦ -(sinβπ₯)) βΎ β) |
31 | resmpt 6044 | . . . 4 β’ (β β β β ((π₯ β β β¦ -(sinβπ₯)) βΎ β) = (π₯ β β β¦ -(sinβπ₯))) | |
32 | 25, 31 | ax-mp 5 | . . 3 β’ ((π₯ β β β¦ -(sinβπ₯)) βΎ β) = (π₯ β β β¦ -(sinβπ₯)) |
33 | 30, 32 | eqtri 2755 | . 2 β’ ((β D cos) βΎ β) = (π₯ β β β¦ -(sinβπ₯)) |
34 | 19, 29, 33 | 3eqtr3i 2763 | 1 β’ (β D (π₯ β β β¦ (cosβπ₯))) = (π₯ β β β¦ -(sinβπ₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3428 Vcvv 3471 β wss 3947 {cpr 4632 β¦ cmpt 5233 dom cdm 5680 βΎ cres 5682 Fn wfn 6546 βΆwf 6547 βcfv 6551 (class class class)co 7424 βcc 11142 βcr 11143 -cneg 11481 sincsin 16045 cosccos 16046 D cdv 25810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-addf 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-fi 9440 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-ico 13368 df-icc 13369 df-fz 13523 df-fzo 13666 df-fl 13795 df-seq 14005 df-exp 14065 df-fac 14271 df-bc 14300 df-hash 14328 df-shft 15052 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-limsup 15453 df-clim 15470 df-rlim 15471 df-sum 15671 df-ef 16049 df-sin 16051 df-cos 16052 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-hom 17262 df-cco 17263 df-rest 17409 df-topn 17410 df-0g 17428 df-gsum 17429 df-topgen 17430 df-pt 17431 df-prds 17434 df-xrs 17489 df-qtop 17494 df-imas 17495 df-xps 17497 df-mre 17571 df-mrc 17572 df-acs 17574 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-mulg 19029 df-cntz 19273 df-cmn 19742 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-lp 23058 df-perf 23059 df-cn 23149 df-cnp 23150 df-haus 23237 df-tx 23484 df-hmeo 23677 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-xms 24244 df-ms 24245 df-tms 24246 df-cncf 24816 df-limc 25813 df-dv 25814 |
This theorem is referenced by: itgsin0pilem1 45340 itgsinexplem1 45344 fourierdlem39 45536 |
Copyright terms: Public domain | W3C validator |