MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Visualization version   GIF version

Theorem dfss3f 3922
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfssf.1 𝑥𝐴
dfssf.2 𝑥𝐵
Assertion
Ref Expression
dfss3f (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)

Proof of Theorem dfss3f
StepHypRef Expression
1 dfssf.1 . . 3 𝑥𝐴
2 dfssf.2 . . 3 𝑥𝐵
31, 2dfssf 3921 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 df-ral 3049 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr4i 278 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2113  wnfc 2880  wral 3048  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-11 2162  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-clel 2808  df-nfc 2882  df-ral 3049  df-ss 3915
This theorem is referenced by:  nfss  3923  nfchnd  18521  sigaclcu2  34156  bnj1498  35096  heibor1  37873  ssrabf  45238  ssrab2f  45241  limsupequzmpt2  45843  liminfequzmpt2  45916  pimconstlt1  46827  pimltpnff  46828  pimdecfgtioc  46840  pimincfltioc  46841  pimdecfgtioo  46842  pimincfltioo  46843  pimgtmnff  46847  sssmf  46863
  Copyright terms: Public domain W3C validator