MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Visualization version   GIF version

Theorem dfss3f 3963
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
dfss3f (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss2f 3962 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 df-ral 3148 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr4i 279 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1528  wcel 2107  wnfc 2966  wral 3143  wss 3940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-in 3947  df-ss 3956
This theorem is referenced by:  nfss  3964  sigaclcu2  31265  bnj1498  32217  heibor1  34956  ssrabf  41247  ssrab2f  41249  limsupequzmpt2  41864  liminfequzmpt2  41937  pimconstlt1  42849  pimltpnf  42850  pimiooltgt  42855  pimdecfgtioc  42859  pimincfltioc  42860  pimdecfgtioo  42861  pimincfltioo  42862  sssmf  42881
  Copyright terms: Public domain W3C validator