MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Visualization version   GIF version

Theorem dfss3f 3973
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
dfss3f (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss2f 3972 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 df-ral 3062 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr4i 277 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2106  wnfc 2883  wral 3061  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  nfss  3974  sigaclcu2  33113  bnj1498  34067  heibor1  36673  ssrabf  43793  ssrab2f  43796  limsupequzmpt2  44424  liminfequzmpt2  44497  pimconstlt1  45408  pimltpnff  45409  pimiooltgt  45416  pimdecfgtioc  45421  pimincfltioc  45422  pimdecfgtioo  45423  pimincfltioo  45424  pimgtmnff  45428  sssmf  45444
  Copyright terms: Public domain W3C validator