![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss3f | Structured version Visualization version GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfss3f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss2f 3972 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∈ wcel 2106 Ⅎwnfc 2883 ∀wral 3061 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: nfss 3974 sigaclcu2 33113 bnj1498 34067 heibor1 36673 ssrabf 43793 ssrab2f 43796 limsupequzmpt2 44424 liminfequzmpt2 44497 pimconstlt1 45408 pimltpnff 45409 pimiooltgt 45416 pimdecfgtioc 45421 pimincfltioc 45422 pimdecfgtioo 45423 pimincfltioo 45424 pimgtmnff 45428 sssmf 45444 |
Copyright terms: Public domain | W3C validator |