| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss3f | Structured version Visualization version GIF version | ||
| Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| dfss3f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfssf 3925 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 df-ss 3919 |
| This theorem is referenced by: nfss 3927 nfchnd 18517 sigaclcu2 34131 bnj1498 35071 heibor1 37856 ssrabf 45157 ssrab2f 45160 limsupequzmpt2 45762 liminfequzmpt2 45835 pimconstlt1 46746 pimltpnff 46747 pimiooltgt 46754 pimdecfgtioc 46759 pimincfltioc 46760 pimdecfgtioo 46761 pimincfltioo 46762 pimgtmnff 46766 sssmf 46782 |
| Copyright terms: Public domain | W3C validator |