![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss3f | Structured version Visualization version GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
Ref | Expression |
---|---|
dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfss3f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfssf 3999 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-clel 2819 df-nfc 2895 df-ral 3068 df-ss 3993 |
This theorem is referenced by: nfss 4001 sigaclcu2 34084 bnj1498 35037 heibor1 37770 ssrabf 45016 ssrab2f 45019 limsupequzmpt2 45639 liminfequzmpt2 45712 pimconstlt1 46623 pimltpnff 46624 pimiooltgt 46631 pimdecfgtioc 46636 pimincfltioc 46637 pimdecfgtioo 46638 pimincfltioo 46639 pimgtmnff 46643 sssmf 46659 |
Copyright terms: Public domain | W3C validator |