MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Visualization version   GIF version

Theorem dfss3f 3938
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfssf.1 𝑥𝐴
dfssf.2 𝑥𝐵
Assertion
Ref Expression
dfss3f (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)

Proof of Theorem dfss3f
StepHypRef Expression
1 dfssf.1 . . 3 𝑥𝐴
2 dfssf.2 . . 3 𝑥𝐵
31, 2dfssf 3937 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 df-ral 3045 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr4i 278 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wnfc 2876  wral 3044  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-clel 2803  df-nfc 2878  df-ral 3045  df-ss 3931
This theorem is referenced by:  nfss  3939  sigaclcu2  34110  bnj1498  35051  heibor1  37804  ssrabf  45108  ssrab2f  45111  limsupequzmpt2  45716  liminfequzmpt2  45789  pimconstlt1  46700  pimltpnff  46701  pimiooltgt  46708  pimdecfgtioc  46713  pimincfltioc  46714  pimdecfgtioo  46715  pimincfltioo  46716  pimgtmnff  46720  sssmf  46736
  Copyright terms: Public domain W3C validator