| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss3f | Structured version Visualization version GIF version | ||
| Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| dfss3f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfssf 3928 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-ss 3922 |
| This theorem is referenced by: nfss 3930 sigaclcu2 34089 bnj1498 35030 heibor1 37792 ssrabf 45095 ssrab2f 45098 limsupequzmpt2 45703 liminfequzmpt2 45776 pimconstlt1 46687 pimltpnff 46688 pimiooltgt 46695 pimdecfgtioc 46700 pimincfltioc 46701 pimdecfgtioo 46702 pimincfltioo 46703 pimgtmnff 46707 sssmf 46723 |
| Copyright terms: Public domain | W3C validator |