![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss3f | Structured version Visualization version GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfss3f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss2f 3964 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | df-ral 3054 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3053 ⊆ wss 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-v 3468 df-in 3947 df-ss 3957 |
This theorem is referenced by: nfss 3966 sigaclcu2 33573 bnj1498 34527 heibor1 37134 ssrabf 44257 ssrab2f 44260 limsupequzmpt2 44885 liminfequzmpt2 44958 pimconstlt1 45869 pimltpnff 45870 pimiooltgt 45877 pimdecfgtioc 45882 pimincfltioc 45883 pimdecfgtioo 45884 pimincfltioo 45885 pimgtmnff 45889 sssmf 45905 |
Copyright terms: Public domain | W3C validator |