Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Visualization version   GIF version

Theorem itgsinexplem1 40680
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
itgsinexplem1.2 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
itgsinexplem1.3 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
itgsinexplem1.4 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
itgsinexplem1.5 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
itgsinexplem1.6 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
itgsinexplem1.7 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
itgsinexplem1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝐿(𝑥)   𝑀(𝑥)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 11330 . . . . 5 (0 − 0) = 0
21oveq1i 6801 . . . 4 ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥) = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
3 0re 10240 . . . . . 6 0 ∈ ℝ
43a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ)
5 pire 24424 . . . . . 6 π ∈ ℝ
65a1i 11 . . . . 5 (𝜑 → π ∈ ℝ)
7 pipos 24426 . . . . . . 7 0 < π
83, 5, 7ltleii 10360 . . . . . 6 0 ≤ π
98a1i 11 . . . . 5 (𝜑 → 0 ≤ π)
103, 5pm3.2i 456 . . . . . . . . . . . . 13 (0 ∈ ℝ ∧ π ∈ ℝ)
11 iccssre 12453 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
13 ax-resscn 10193 . . . . . . . . . . . 12 ℝ ⊆ ℂ
1412, 13sstri 3761 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
1514sseli 3748 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615adantl 467 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
1715sincld 15059 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
1817adantl 467 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
19 itgsinexplem1.7 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2019nnnn0d 11551 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2120adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
2218, 21expcld 13208 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
23 itgsinexplem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2423fvmpt2 6431 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2516, 22, 24syl2anc 573 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2625eqcomd 2777 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = (𝐹𝑥))
2726mpteq2dva 4878 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)))
28 nfmpt1 4881 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2923, 28nfcxfr 2911 . . . . . . 7 𝑥𝐹
30 nfcv 2913 . . . . . . . . 9 𝑥sin
31 sincn 24411 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3330, 32, 20expcnfg 40334 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
3423, 33syl5eqel 2854 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
3514a1i 11 . . . . . . 7 (𝜑 → (0[,]π) ⊆ ℂ)
3629, 34, 35cncfmptss 40330 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)) ∈ ((0[,]π)–cn→ℂ))
3727, 36eqeltrd 2850 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
3815coscld 15060 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
3938negcld 10579 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
40 itgsinexplem1.2 . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4140fvmpt2 6431 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → (𝐺𝑥) = -(cos‘𝑥))
4215, 39, 41syl2anc 573 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → (𝐺𝑥) = -(cos‘𝑥))
4342eqcomd 2777 . . . . . . . 8 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = (𝐺𝑥))
4443adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) = (𝐺𝑥))
4544mpteq2dva 4878 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)))
46 nfmpt1 4881 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4740, 46nfcxfr 2911 . . . . . . 7 𝑥𝐺
48 coscn 24412 . . . . . . . . 9 cos ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . . . . 8 (𝜑 → cos ∈ (ℂ–cn→ℂ))
5040negfcncf 22935 . . . . . . . 8 (cos ∈ (ℂ–cn→ℂ) → 𝐺 ∈ (ℂ–cn→ℂ))
5149, 50syl 17 . . . . . . 7 (𝜑𝐺 ∈ (ℂ–cn→ℂ))
5247, 51, 35cncfmptss 40330 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)) ∈ ((0[,]π)–cn→ℂ))
5345, 52eqeltrd 2850 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
54 itgsinexplem1.3 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
55 ssid 3773 . . . . . . . . . . 11 ℂ ⊆ ℂ
5655a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5719nncnd 11236 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
5856, 57, 56constcncfg 40595 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑁) ∈ (ℂ–cn→ℂ))
59 nnm1nn0 11534 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6019, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
6130, 32, 60expcnfg 40334 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
6258, 61mulcncf 23427 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑁 · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
63 cosf 15054 . . . . . . . . . . 11 cos:ℂ⟶ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → cos:ℂ⟶ℂ)
6564feqmptd 6389 . . . . . . . . 9 (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
6665, 48syl6eqelr 2859 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
6762, 66mulcncf 23427 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ (ℂ–cn→ℂ))
6854, 67syl5eqel 2854 . . . . . 6 (𝜑𝐻 ∈ (ℂ–cn→ℂ))
69 ioosscn 40230 . . . . . . 7 (0(,)π) ⊆ ℂ
7069a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ℂ)
7157adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℂ)
7269sseli 3748 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
7372sincld 15059 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
7473adantl 467 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
7560adantr 466 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 1) ∈ ℕ0)
7674, 75expcld 13208 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
7771, 76mulcld 10260 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
7872coscld 15060 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ ℂ)
7978adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘𝑥) ∈ ℂ)
8077, 79mulcld 10260 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
8154, 68, 70, 56, 80cncfmptssg 40594 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ ((0(,)π)–cn→ℂ))
8230, 32, 70cncfmptss 40330 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
83 ioossicc 12457 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
8483a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
85 ioombl 23546 . . . . . . 7 (0(,)π) ∈ dom vol
8685a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
8722, 18mulcld 10260 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ)
88 itgsinexplem1.4 . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8988fvmpt2 6431 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9016, 87, 89syl2anc 573 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9190eqcomd 2777 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) = (𝐼𝑥))
9291mpteq2dva 4878 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) = (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)))
93 nfmpt1 4881 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9488, 93nfcxfr 2911 . . . . . . . . 9 𝑥𝐼
95 sinf 15053 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
9695a1i 11 . . . . . . . . . . . . 13 (𝜑 → sin:ℂ⟶ℂ)
9796feqmptd 6389 . . . . . . . . . . . 12 (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
9897, 31syl6eqelr 2859 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (sin‘𝑥)) ∈ (ℂ–cn→ℂ))
9933, 98mulcncf 23427 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ (ℂ–cn→ℂ))
10088, 99syl5eqel 2854 . . . . . . . . 9 (𝜑𝐼 ∈ (ℂ–cn→ℂ))
10194, 100, 35cncfmptss 40330 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)) ∈ ((0[,]π)–cn→ℂ))
10292, 101eqeltrd 2850 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
103 cniccibl 23820 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
1044, 6, 102, 103syl3anc 1476 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10584, 86, 87, 104iblss 23784 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10657adantr 466 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℂ)
10760adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 1) ∈ ℕ0)
10818, 107expcld 13208 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
109106, 108mulcld 10260 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
11038adantl 467 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
111109, 110mulcld 10260 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
11239adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
113111, 112mulcld 10260 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) ∈ ℂ)
114 itgsinexplem1.5 . . . . . . . 8 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
115 eqid 2771 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
116115negfcncf 22935 . . . . . . . . . . 11 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11749, 116syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11867, 117mulcncf 23427 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ (ℂ–cn→ℂ))
119114, 118syl5eqel 2854 . . . . . . . 8 (𝜑𝐿 ∈ (ℂ–cn→ℂ))
120114, 119, 35, 56, 113cncfmptssg 40594 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
121 cniccibl 23820 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
1224, 6, 120, 121syl3anc 1476 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
12384, 86, 113, 122iblss 23784 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
124 reelprrecn 10228 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
125124a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
126 recn 10226 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
127126sincld 15059 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
128127adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
12920adantr 466 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℕ0)
130128, 129expcld 13208 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
13157adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
13260adantr 466 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑁 − 1) ∈ ℕ0)
133128, 132expcld 13208 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
134131, 133mulcld 10260 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
135126coscld 15060 . . . . . . . 8 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
136135adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
137134, 136mulcld 10260 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
138 sincl 15055 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
139138adantl 467 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
14020adantr 466 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
141139, 140expcld 13208 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
142141, 23fmptd 6525 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
143126adantl 467 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
144 elex 3364 . . . . . . . . . . . . . . 15 (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
145137, 144syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
146 rabid 3264 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V} ↔ (𝑥 ∈ ℂ ∧ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V))
147143, 145, 146sylanbrc 572 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V})
14854dmmpt 5772 . . . . . . . . . . . . 13 dom 𝐻 = {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V}
149147, 148syl6eleqr 2861 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ dom 𝐻)
150149ex 397 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
151150alrimiv 2007 . . . . . . . . . 10 (𝜑 → ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
152 nfcv 2913 . . . . . . . . . . 11 𝑥
153 nfmpt1 4881 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
15454, 153nfcxfr 2911 . . . . . . . . . . . 12 𝑥𝐻
155154nfdm 5503 . . . . . . . . . . 11 𝑥dom 𝐻
156152, 155dfss2f 3743 . . . . . . . . . 10 (ℝ ⊆ dom 𝐻 ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
157151, 156sylibr 224 . . . . . . . . 9 (𝜑 → ℝ ⊆ dom 𝐻)
15819dvsinexp 40636 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
15923oveq2i 6802 . . . . . . . . . . 11 (ℂ D 𝐹) = (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)))
160158, 159, 543eqtr4g 2830 . . . . . . . . . 10 (𝜑 → (ℂ D 𝐹) = 𝐻)
161160dmeqd 5462 . . . . . . . . 9 (𝜑 → dom (ℂ D 𝐹) = dom 𝐻)
162157, 161sseqtr4d 3791 . . . . . . . 8 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
163 dvres3 23890 . . . . . . . 8 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
164125, 142, 56, 162, 163syl22anc 1477 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
16523reseq1i 5528 . . . . . . . . . 10 (𝐹 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ)
166 resmpt 5588 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
16713, 166ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
168165, 167eqtri 2793 . . . . . . . . 9 (𝐹 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
169168oveq2i 6802 . . . . . . . 8 (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
170169a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))))
171160reseq1d 5531 . . . . . . . 8 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝐻 ↾ ℝ))
17254reseq1i 5528 . . . . . . . . 9 (𝐻 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ)
173 resmpt 5588 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17413, 173ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
175172, 174eqtri 2793 . . . . . . . 8 (𝐻 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
176171, 175syl6eq 2821 . . . . . . 7 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
177164, 170, 1763eqtr3d 2813 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17812a1i 11 . . . . . 6 (𝜑 → (0[,]π) ⊆ ℝ)
179 eqid 2771 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
180179tgioo2 22819 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
18110a1i 11 . . . . . . 7 (𝜑 → (0 ∈ ℝ ∧ π ∈ ℝ))
182 iccntr 22837 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
183181, 182syl 17 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
184125, 130, 137, 177, 178, 180, 179, 183dvmptres2 23938 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
185135negcld 10579 . . . . . . 7 (𝑥 ∈ ℝ → -(cos‘𝑥) ∈ ℂ)
186185adantl 467 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
187127negcld 10579 . . . . . . . . 9 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
188187adantl 467 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
189 dvcosre 40637 . . . . . . . . 9 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
190189a1i 11 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
191125, 136, 188, 190dvmptneg 23942 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
192127negnegd 10583 . . . . . . . . 9 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
193192adantl 467 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → --(sin‘𝑥) = (sin‘𝑥))
194193mpteq2dva 4878 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
195191, 194eqtrd 2805 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
196125, 186, 128, 195, 178, 180, 179, 183dvmptres2 23938 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
197 fveq2 6330 . . . . . . . . . . 11 (𝑥 = 0 → (sin‘𝑥) = (sin‘0))
198 sin0 15078 . . . . . . . . . . 11 (sin‘0) = 0
199197, 198syl6eq 2821 . . . . . . . . . 10 (𝑥 = 0 → (sin‘𝑥) = 0)
200199oveq1d 6806 . . . . . . . . 9 (𝑥 = 0 → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
201200adantl 467 . . . . . . . 8 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
20219adantr 466 . . . . . . . . 9 ((𝜑𝑥 = 0) → 𝑁 ∈ ℕ)
2032020expd 13224 . . . . . . . 8 ((𝜑𝑥 = 0) → (0↑𝑁) = 0)
204201, 203eqtrd 2805 . . . . . . 7 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = 0)
205204oveq1d 6806 . . . . . 6 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
206 id 22 . . . . . . . . . 10 (𝑥 = 0 → 𝑥 = 0)
207 0cn 10232 . . . . . . . . . 10 0 ∈ ℂ
208206, 207syl6eqel 2858 . . . . . . . . 9 (𝑥 = 0 → 𝑥 ∈ ℂ)
209 coscl 15056 . . . . . . . . . 10 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
210209negcld 10579 . . . . . . . . 9 (𝑥 ∈ ℂ → -(cos‘𝑥) ∈ ℂ)
211208, 210syl 17 . . . . . . . 8 (𝑥 = 0 → -(cos‘𝑥) ∈ ℂ)
212211adantl 467 . . . . . . 7 ((𝜑𝑥 = 0) → -(cos‘𝑥) ∈ ℂ)
213212mul02d 10434 . . . . . 6 ((𝜑𝑥 = 0) → (0 · -(cos‘𝑥)) = 0)
214205, 213eqtrd 2805 . . . . 5 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
215 fveq2 6330 . . . . . . . . . . 11 (𝑥 = π → (sin‘𝑥) = (sin‘π))
216 sinpi 24423 . . . . . . . . . . 11 (sin‘π) = 0
217215, 216syl6eq 2821 . . . . . . . . . 10 (𝑥 = π → (sin‘𝑥) = 0)
218217oveq1d 6806 . . . . . . . . 9 (𝑥 = π → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
219218adantl 467 . . . . . . . 8 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
22019adantr 466 . . . . . . . . 9 ((𝜑𝑥 = π) → 𝑁 ∈ ℕ)
2212200expd 13224 . . . . . . . 8 ((𝜑𝑥 = π) → (0↑𝑁) = 0)
222219, 221eqtrd 2805 . . . . . . 7 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = 0)
223222oveq1d 6806 . . . . . 6 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
224 id 22 . . . . . . . . . . 11 (𝑥 = π → 𝑥 = π)
225 picn 24425 . . . . . . . . . . 11 π ∈ ℂ
226224, 225syl6eqel 2858 . . . . . . . . . 10 (𝑥 = π → 𝑥 ∈ ℂ)
227226coscld 15060 . . . . . . . . 9 (𝑥 = π → (cos‘𝑥) ∈ ℂ)
228227negcld 10579 . . . . . . . 8 (𝑥 = π → -(cos‘𝑥) ∈ ℂ)
229228adantl 467 . . . . . . 7 ((𝜑𝑥 = π) → -(cos‘𝑥) ∈ ℂ)
230229mul02d 10434 . . . . . 6 ((𝜑𝑥 = π) → (0 · -(cos‘𝑥)) = 0)
231223, 230eqtrd 2805 . . . . 5 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
2324, 6, 9, 37, 53, 81, 82, 105, 123, 184, 196, 214, 231itgparts 24023 . . . 4 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
233 df-neg 10469 . . . . 5 -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
234233a1i 11 . . . 4 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
2352, 232, 2343eqtr4a 2831 . . 3 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
23677, 79, 79mulassd 10263 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))))
237 sqval 13122 . . . . . . . . . . . . . 14 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥)↑2) = ((cos‘𝑥) · (cos‘𝑥)))
238237eqcomd 2777 . . . . . . . . . . . . 13 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
23978, 238syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
240239adantl 467 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
241240oveq2d 6807 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)))
24278sqcld 13206 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) ∈ ℂ)
243242adantl 467 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥)↑2) ∈ ℂ)
24471, 76, 243mulassd 10263 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
245241, 244eqtrd 2805 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
24676, 243mulcomd 10261 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2)) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
247246oveq2d 6807 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
248236, 245, 2473eqtrd 2809 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
249248negeqd 10475 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
25080, 79mulneg2d 10684 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)))
251243, 76mulcld 10260 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
25271, 251mulneg1d 10683 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
253249, 250, 2523eqtr4d 2815 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
254253itgeq2dv 23761 . . . . 5 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
25557negcld 10579 . . . . . 6 (𝜑 → -𝑁 ∈ ℂ)
25638sqcld 13206 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → ((cos‘𝑥)↑2) ∈ ℂ)
257256adantl 467 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((cos‘𝑥)↑2) ∈ ℂ)
258257, 108mulcld 10260 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
259 itgsinexplem1.6 . . . . . . . . . . . . 13 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
260259fvmpt2 6431 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
26116, 258, 260syl2anc 573 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
262261eqcomd 2777 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) = (𝑀𝑥))
263262mpteq2dva 4878 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)))
264 nfmpt1 4881 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
265259, 264nfcxfr 2911 . . . . . . . . . 10 𝑥𝑀
266 nfcv 2913 . . . . . . . . . . . . 13 𝑥cos
267 2nn0 11509 . . . . . . . . . . . . . 14 2 ∈ ℕ0
268267a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ0)
269266, 49, 268expcnfg 40334 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((cos‘𝑥)↑2)) ∈ (ℂ–cn→ℂ))
270269, 61mulcncf 23427 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
271259, 270syl5eqel 2854 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℂ–cn→ℂ))
272265, 271, 35cncfmptss 40330 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)) ∈ ((0[,]π)–cn→ℂ))
273263, 272eqeltrd 2850 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ))
274 cniccibl 23820 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
2754, 6, 273, 274syl3anc 1476 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
27684, 86, 258, 275iblss 23784 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
277255, 251, 276itgmulc2 23813 . . . . 5 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
278254, 277eqtr4d 2808 . . . 4 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
279278negeqd 10475 . . 3 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
280235, 279eqtrd 2805 . 2 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
281251, 276itgcl 23763 . . . 4 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥 ∈ ℂ)
28257, 281mulneg1d 10683 . . 3 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = -(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
283282negeqd 10475 . 2 (𝜑 → -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
28457, 281mulcld 10260 . . 3 (𝜑 → (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) ∈ ℂ)
285284negnegd 10583 . 2 (𝜑 → --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
286280, 283, 2853eqtrd 2809 1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629   = wceq 1631  wcel 2145  {crab 3065  Vcvv 3351  wss 3723  {cpr 4318   class class class wbr 4786  cmpt 4863  dom cdm 5249  ran crn 5250  cres 5251  wf 6025  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136  1c1 10137   · cmul 10141  cle 10275  cmin 10466  -cneg 10467  cn 11220  2c2 11270  0cn0 11492  (,)cioo 12373  [,]cicc 12376  cexp 13060  sincsin 14993  cosccos 14994  πcpi 14996  TopOpenctopn 16283  topGenctg 16299  fldccnfld 19954  intcnt 21035  cnccncf 22892  volcvol 23444  𝐿1cibl 23598  citg 23599   D cdv 23840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cc 9457  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-ofr 7043  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-acn 8966  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-ovol 23445  df-vol 23446  df-mbf 23600  df-itg1 23601  df-itg2 23602  df-ibl 23603  df-itg 23604  df-0p 23650  df-limc 23843  df-dv 23844
This theorem is referenced by:  itgsinexp  40681
  Copyright terms: Public domain W3C validator