Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Visualization version   GIF version

Theorem itgsinexplem1 45875
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
itgsinexplem1.2 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
itgsinexplem1.3 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
itgsinexplem1.4 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
itgsinexplem1.5 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
itgsinexplem1.6 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
itgsinexplem1.7 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
itgsinexplem1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝐿(𝑥)   𝑀(𝑥)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 12413 . . . . 5 (0 − 0) = 0
21oveq1i 7458 . . . 4 ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥) = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
3 0re 11292 . . . . . 6 0 ∈ ℝ
43a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ)
5 pire 26518 . . . . . 6 π ∈ ℝ
65a1i 11 . . . . 5 (𝜑 → π ∈ ℝ)
7 pipos 26520 . . . . . . 7 0 < π
83, 5, 7ltleii 11413 . . . . . 6 0 ≤ π
98a1i 11 . . . . 5 (𝜑 → 0 ≤ π)
103, 5pm3.2i 470 . . . . . . . . . . . . 13 (0 ∈ ℝ ∧ π ∈ ℝ)
11 iccssre 13489 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
13 ax-resscn 11241 . . . . . . . . . . . 12 ℝ ⊆ ℂ
1412, 13sstri 4018 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
1514sseli 4004 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
1715sincld 16178 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
19 itgsinexplem1.7 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2019nnnn0d 12613 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
2218, 21expcld 14196 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
23 itgsinexplem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2423fvmpt2 7040 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2516, 22, 24syl2anc 583 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2625eqcomd 2746 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = (𝐹𝑥))
2726mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)))
28 nfmpt1 5274 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2923, 28nfcxfr 2906 . . . . . . 7 𝑥𝐹
30 nfcv 2908 . . . . . . . . 9 𝑥sin
31 sincn 26506 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3330, 32, 20expcnfg 45512 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
3423, 33eqeltrid 2848 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
3514a1i 11 . . . . . . 7 (𝜑 → (0[,]π) ⊆ ℂ)
3629, 34, 35cncfmptss 45508 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)) ∈ ((0[,]π)–cn→ℂ))
3727, 36eqeltrd 2844 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
3815coscld 16179 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
3938negcld 11634 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
40 itgsinexplem1.2 . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4140fvmpt2 7040 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → (𝐺𝑥) = -(cos‘𝑥))
4215, 39, 41syl2anc 583 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → (𝐺𝑥) = -(cos‘𝑥))
4342eqcomd 2746 . . . . . . . 8 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = (𝐺𝑥))
4443adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) = (𝐺𝑥))
4544mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)))
46 nfmpt1 5274 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4740, 46nfcxfr 2906 . . . . . . 7 𝑥𝐺
48 coscn 26507 . . . . . . . . 9 cos ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . . . . 8 (𝜑 → cos ∈ (ℂ–cn→ℂ))
5040negfcncf 24969 . . . . . . . 8 (cos ∈ (ℂ–cn→ℂ) → 𝐺 ∈ (ℂ–cn→ℂ))
5149, 50syl 17 . . . . . . 7 (𝜑𝐺 ∈ (ℂ–cn→ℂ))
5247, 51, 35cncfmptss 45508 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)) ∈ ((0[,]π)–cn→ℂ))
5345, 52eqeltrd 2844 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
54 itgsinexplem1.3 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
55 ssidd 4032 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5619nncnd 12309 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
5755, 56, 55constcncfg 45793 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑁) ∈ (ℂ–cn→ℂ))
58 nnm1nn0 12594 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
5919, 58syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
6030, 32, 59expcnfg 45512 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
6157, 60mulcncf 25499 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑁 · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
62 cosf 16173 . . . . . . . . . . 11 cos:ℂ⟶ℂ
6362a1i 11 . . . . . . . . . 10 (𝜑 → cos:ℂ⟶ℂ)
6463feqmptd 6990 . . . . . . . . 9 (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
6564, 48eqeltrrdi 2853 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
6661, 65mulcncf 25499 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ (ℂ–cn→ℂ))
6754, 66eqeltrid 2848 . . . . . 6 (𝜑𝐻 ∈ (ℂ–cn→ℂ))
68 ioosscn 13469 . . . . . . 7 (0(,)π) ⊆ ℂ
6968a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ℂ)
7056adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℂ)
7168sseli 4004 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
7271sincld 16178 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
7372adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
7459adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 1) ∈ ℕ0)
7573, 74expcld 14196 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
7670, 75mulcld 11310 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
7771coscld 16179 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ ℂ)
7877adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘𝑥) ∈ ℂ)
7976, 78mulcld 11310 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
8054, 67, 69, 55, 79cncfmptssg 45792 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ ((0(,)π)–cn→ℂ))
8130, 32, 69cncfmptss 45508 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
82 ioossicc 13493 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
8382a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
84 ioombl 25619 . . . . . . 7 (0(,)π) ∈ dom vol
8584a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
8622, 18mulcld 11310 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ)
87 itgsinexplem1.4 . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8887fvmpt2 7040 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8916, 86, 88syl2anc 583 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9089eqcomd 2746 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) = (𝐼𝑥))
9190mpteq2dva 5266 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) = (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)))
92 nfmpt1 5274 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9387, 92nfcxfr 2906 . . . . . . . . 9 𝑥𝐼
94 sinf 16172 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → sin:ℂ⟶ℂ)
9695feqmptd 6990 . . . . . . . . . . . 12 (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
9796, 31eqeltrrdi 2853 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (sin‘𝑥)) ∈ (ℂ–cn→ℂ))
9833, 97mulcncf 25499 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ (ℂ–cn→ℂ))
9987, 98eqeltrid 2848 . . . . . . . . 9 (𝜑𝐼 ∈ (ℂ–cn→ℂ))
10093, 99, 35cncfmptss 45508 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)) ∈ ((0[,]π)–cn→ℂ))
10191, 100eqeltrd 2844 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
102 cniccibl 25896 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
1034, 6, 101, 102syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10483, 85, 86, 103iblss 25860 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10556adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℂ)
10659adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 1) ∈ ℕ0)
10718, 106expcld 14196 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
108105, 107mulcld 11310 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
10938adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
110108, 109mulcld 11310 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
11139adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
112110, 111mulcld 11310 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) ∈ ℂ)
113 itgsinexplem1.5 . . . . . . . 8 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
114 eqid 2740 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
115114negfcncf 24969 . . . . . . . . . . 11 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11649, 115syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11766, 116mulcncf 25499 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ (ℂ–cn→ℂ))
118113, 117eqeltrid 2848 . . . . . . . 8 (𝜑𝐿 ∈ (ℂ–cn→ℂ))
119113, 118, 35, 55, 112cncfmptssg 45792 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
120 cniccibl 25896 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
1214, 6, 119, 120syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
12283, 85, 112, 121iblss 25860 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
123 reelprrecn 11276 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
125 recn 11274 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
126125sincld 16178 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
127126adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
12820adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℕ0)
129127, 128expcld 14196 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
13056adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
13159adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑁 − 1) ∈ ℕ0)
132127, 131expcld 14196 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
133130, 132mulcld 11310 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
134125coscld 16179 . . . . . . . 8 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
135134adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
136133, 135mulcld 11310 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
137 sincl 16174 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
138137adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
13920adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
140138, 139expcld 14196 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
141140, 23fmptd 7148 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
142125adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
143 elex 3509 . . . . . . . . . . . . . . 15 (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
144136, 143syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
145 rabid 3465 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V} ↔ (𝑥 ∈ ℂ ∧ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V))
146142, 144, 145sylanbrc 582 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V})
14754dmmpt 6271 . . . . . . . . . . . . 13 dom 𝐻 = {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V}
148146, 147eleqtrrdi 2855 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ dom 𝐻)
149148ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
150149alrimiv 1926 . . . . . . . . . 10 (𝜑 → ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
151 nfcv 2908 . . . . . . . . . . 11 𝑥
152 nfmpt1 5274 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
15354, 152nfcxfr 2906 . . . . . . . . . . . 12 𝑥𝐻
154153nfdm 5976 . . . . . . . . . . 11 𝑥dom 𝐻
155151, 154dfssf 3999 . . . . . . . . . 10 (ℝ ⊆ dom 𝐻 ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
156150, 155sylibr 234 . . . . . . . . 9 (𝜑 → ℝ ⊆ dom 𝐻)
15719dvsinexp 45832 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
15823oveq2i 7459 . . . . . . . . . . 11 (ℂ D 𝐹) = (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)))
159157, 158, 543eqtr4g 2805 . . . . . . . . . 10 (𝜑 → (ℂ D 𝐹) = 𝐻)
160159dmeqd 5930 . . . . . . . . 9 (𝜑 → dom (ℂ D 𝐹) = dom 𝐻)
161156, 160sseqtrrd 4050 . . . . . . . 8 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
162 dvres3 25968 . . . . . . . 8 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
163124, 141, 55, 161, 162syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
16423reseq1i 6005 . . . . . . . . . 10 (𝐹 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ)
165 resmpt 6066 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
16613, 165ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
167164, 166eqtri 2768 . . . . . . . . 9 (𝐹 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
168167oveq2i 7459 . . . . . . . 8 (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
169168a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))))
170159reseq1d 6008 . . . . . . . 8 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝐻 ↾ ℝ))
17154reseq1i 6005 . . . . . . . . 9 (𝐻 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ)
172 resmpt 6066 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17313, 172ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
174171, 173eqtri 2768 . . . . . . . 8 (𝐻 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
175170, 174eqtrdi 2796 . . . . . . 7 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
176163, 169, 1753eqtr3d 2788 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17712a1i 11 . . . . . 6 (𝜑 → (0[,]π) ⊆ ℝ)
178 eqid 2740 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
179178tgioo2 24844 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
18010a1i 11 . . . . . . 7 (𝜑 → (0 ∈ ℝ ∧ π ∈ ℝ))
181 iccntr 24862 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
182180, 181syl 17 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
183124, 129, 136, 176, 177, 179, 178, 182dvmptres2 26020 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
184134negcld 11634 . . . . . . 7 (𝑥 ∈ ℝ → -(cos‘𝑥) ∈ ℂ)
185184adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
186126negcld 11634 . . . . . . . . 9 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
187186adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
188 dvcosre 45833 . . . . . . . . 9 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
189188a1i 11 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
190124, 135, 187, 189dvmptneg 26024 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
191126negnegd 11638 . . . . . . . . 9 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
192191adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → --(sin‘𝑥) = (sin‘𝑥))
193192mpteq2dva 5266 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
194190, 193eqtrd 2780 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
195124, 185, 127, 194, 177, 179, 178, 182dvmptres2 26020 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
196 fveq2 6920 . . . . . . . . . . 11 (𝑥 = 0 → (sin‘𝑥) = (sin‘0))
197 sin0 16197 . . . . . . . . . . 11 (sin‘0) = 0
198196, 197eqtrdi 2796 . . . . . . . . . 10 (𝑥 = 0 → (sin‘𝑥) = 0)
199198oveq1d 7463 . . . . . . . . 9 (𝑥 = 0 → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
200199adantl 481 . . . . . . . 8 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
20119adantr 480 . . . . . . . . 9 ((𝜑𝑥 = 0) → 𝑁 ∈ ℕ)
2022010expd 14189 . . . . . . . 8 ((𝜑𝑥 = 0) → (0↑𝑁) = 0)
203200, 202eqtrd 2780 . . . . . . 7 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = 0)
204203oveq1d 7463 . . . . . 6 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
205 id 22 . . . . . . . . . 10 (𝑥 = 0 → 𝑥 = 0)
206 0cn 11282 . . . . . . . . . 10 0 ∈ ℂ
207205, 206eqeltrdi 2852 . . . . . . . . 9 (𝑥 = 0 → 𝑥 ∈ ℂ)
208 coscl 16175 . . . . . . . . . 10 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
209208negcld 11634 . . . . . . . . 9 (𝑥 ∈ ℂ → -(cos‘𝑥) ∈ ℂ)
210207, 209syl 17 . . . . . . . 8 (𝑥 = 0 → -(cos‘𝑥) ∈ ℂ)
211210adantl 481 . . . . . . 7 ((𝜑𝑥 = 0) → -(cos‘𝑥) ∈ ℂ)
212211mul02d 11488 . . . . . 6 ((𝜑𝑥 = 0) → (0 · -(cos‘𝑥)) = 0)
213204, 212eqtrd 2780 . . . . 5 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
214 fveq2 6920 . . . . . . . . . . 11 (𝑥 = π → (sin‘𝑥) = (sin‘π))
215 sinpi 26517 . . . . . . . . . . 11 (sin‘π) = 0
216214, 215eqtrdi 2796 . . . . . . . . . 10 (𝑥 = π → (sin‘𝑥) = 0)
217216oveq1d 7463 . . . . . . . . 9 (𝑥 = π → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
218217adantl 481 . . . . . . . 8 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
21919adantr 480 . . . . . . . . 9 ((𝜑𝑥 = π) → 𝑁 ∈ ℕ)
2202190expd 14189 . . . . . . . 8 ((𝜑𝑥 = π) → (0↑𝑁) = 0)
221218, 220eqtrd 2780 . . . . . . 7 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = 0)
222221oveq1d 7463 . . . . . 6 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
223 id 22 . . . . . . . . . . 11 (𝑥 = π → 𝑥 = π)
224 picn 26519 . . . . . . . . . . 11 π ∈ ℂ
225223, 224eqeltrdi 2852 . . . . . . . . . 10 (𝑥 = π → 𝑥 ∈ ℂ)
226225coscld 16179 . . . . . . . . 9 (𝑥 = π → (cos‘𝑥) ∈ ℂ)
227226negcld 11634 . . . . . . . 8 (𝑥 = π → -(cos‘𝑥) ∈ ℂ)
228227adantl 481 . . . . . . 7 ((𝜑𝑥 = π) → -(cos‘𝑥) ∈ ℂ)
229228mul02d 11488 . . . . . 6 ((𝜑𝑥 = π) → (0 · -(cos‘𝑥)) = 0)
230222, 229eqtrd 2780 . . . . 5 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
2314, 6, 9, 37, 53, 80, 81, 104, 122, 183, 195, 213, 230itgparts 26108 . . . 4 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
232 df-neg 11523 . . . . 5 -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
233232a1i 11 . . . 4 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
2342, 231, 2333eqtr4a 2806 . . 3 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
23576, 78, 78mulassd 11313 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))))
236 sqval 14165 . . . . . . . . . . . . . 14 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥)↑2) = ((cos‘𝑥) · (cos‘𝑥)))
237236eqcomd 2746 . . . . . . . . . . . . 13 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
23877, 237syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
239238adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
240239oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)))
24177sqcld 14194 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) ∈ ℂ)
242241adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥)↑2) ∈ ℂ)
24370, 75, 242mulassd 11313 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
244240, 243eqtrd 2780 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
24575, 242mulcomd 11311 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2)) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
246245oveq2d 7464 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
247235, 244, 2463eqtrd 2784 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
248247negeqd 11530 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
24979, 78mulneg2d 11744 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)))
250242, 75mulcld 11310 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
25170, 250mulneg1d 11743 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
252248, 249, 2513eqtr4d 2790 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
253252itgeq2dv 25837 . . . . 5 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
25456negcld 11634 . . . . . 6 (𝜑 → -𝑁 ∈ ℂ)
25538sqcld 14194 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → ((cos‘𝑥)↑2) ∈ ℂ)
256255adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((cos‘𝑥)↑2) ∈ ℂ)
257256, 107mulcld 11310 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
258 itgsinexplem1.6 . . . . . . . . . . . . 13 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
259258fvmpt2 7040 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
26016, 257, 259syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
261260eqcomd 2746 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) = (𝑀𝑥))
262261mpteq2dva 5266 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)))
263 nfmpt1 5274 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
264258, 263nfcxfr 2906 . . . . . . . . . 10 𝑥𝑀
265 nfcv 2908 . . . . . . . . . . . . 13 𝑥cos
266 2nn0 12570 . . . . . . . . . . . . . 14 2 ∈ ℕ0
267266a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ0)
268265, 49, 267expcnfg 45512 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((cos‘𝑥)↑2)) ∈ (ℂ–cn→ℂ))
269268, 60mulcncf 25499 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
270258, 269eqeltrid 2848 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℂ–cn→ℂ))
271264, 270, 35cncfmptss 45508 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)) ∈ ((0[,]π)–cn→ℂ))
272262, 271eqeltrd 2844 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ))
273 cniccibl 25896 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
2744, 6, 272, 273syl3anc 1371 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
27583, 85, 257, 274iblss 25860 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
276254, 250, 275itgmulc2 25889 . . . . 5 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
277253, 276eqtr4d 2783 . . . 4 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
278277negeqd 11530 . . 3 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
279234, 278eqtrd 2780 . 2 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
280250, 275itgcl 25839 . . . 4 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥 ∈ ℂ)
28156, 280mulneg1d 11743 . . 3 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = -(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
282281negeqd 11530 . 2 (𝜑 → -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
28356, 280mulcld 11310 . . 3 (𝜑 → (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) ∈ ℂ)
284283negnegd 11638 . 2 (𝜑 → --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
285279, 282, 2843eqtrd 2784 1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325  cmin 11520  -cneg 11521  cn 12293  2c2 12348  0cn0 12553  (,)cioo 13407  [,]cicc 13410  cexp 14112  sincsin 16111  cosccos 16112  πcpi 16114  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  intcnt 23046  cnccncf 24921  volcvol 25517  𝐿1cibl 25671  citg 25672   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922
This theorem is referenced by:  itgsinexp  45876
  Copyright terms: Public domain W3C validator