Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Visualization version   GIF version

Theorem itgsinexplem1 44185
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
itgsinexplem1.2 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
itgsinexplem1.3 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
itgsinexplem1.4 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
itgsinexplem1.5 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
itgsinexplem1.6 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
itgsinexplem1.7 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
itgsinexplem1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝐿(𝑥)   𝑀(𝑥)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 12273 . . . . 5 (0 − 0) = 0
21oveq1i 7367 . . . 4 ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥) = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
3 0re 11157 . . . . . 6 0 ∈ ℝ
43a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ)
5 pire 25815 . . . . . 6 π ∈ ℝ
65a1i 11 . . . . 5 (𝜑 → π ∈ ℝ)
7 pipos 25817 . . . . . . 7 0 < π
83, 5, 7ltleii 11278 . . . . . 6 0 ≤ π
98a1i 11 . . . . 5 (𝜑 → 0 ≤ π)
103, 5pm3.2i 471 . . . . . . . . . . . . 13 (0 ∈ ℝ ∧ π ∈ ℝ)
11 iccssre 13346 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
13 ax-resscn 11108 . . . . . . . . . . . 12 ℝ ⊆ ℂ
1412, 13sstri 3953 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
1514sseli 3940 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
1715sincld 16012 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
1817adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
19 itgsinexplem1.7 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2019nnnn0d 12473 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2120adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
2218, 21expcld 14051 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
23 itgsinexplem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2423fvmpt2 6959 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2516, 22, 24syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2625eqcomd 2742 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = (𝐹𝑥))
2726mpteq2dva 5205 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)))
28 nfmpt1 5213 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2923, 28nfcxfr 2905 . . . . . . 7 𝑥𝐹
30 nfcv 2907 . . . . . . . . 9 𝑥sin
31 sincn 25803 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3330, 32, 20expcnfg 43822 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
3423, 33eqeltrid 2842 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
3514a1i 11 . . . . . . 7 (𝜑 → (0[,]π) ⊆ ℂ)
3629, 34, 35cncfmptss 43818 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)) ∈ ((0[,]π)–cn→ℂ))
3727, 36eqeltrd 2838 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
3815coscld 16013 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
3938negcld 11499 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
40 itgsinexplem1.2 . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4140fvmpt2 6959 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → (𝐺𝑥) = -(cos‘𝑥))
4215, 39, 41syl2anc 584 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → (𝐺𝑥) = -(cos‘𝑥))
4342eqcomd 2742 . . . . . . . 8 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = (𝐺𝑥))
4443adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) = (𝐺𝑥))
4544mpteq2dva 5205 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)))
46 nfmpt1 5213 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4740, 46nfcxfr 2905 . . . . . . 7 𝑥𝐺
48 coscn 25804 . . . . . . . . 9 cos ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . . . . 8 (𝜑 → cos ∈ (ℂ–cn→ℂ))
5040negfcncf 24286 . . . . . . . 8 (cos ∈ (ℂ–cn→ℂ) → 𝐺 ∈ (ℂ–cn→ℂ))
5149, 50syl 17 . . . . . . 7 (𝜑𝐺 ∈ (ℂ–cn→ℂ))
5247, 51, 35cncfmptss 43818 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)) ∈ ((0[,]π)–cn→ℂ))
5345, 52eqeltrd 2838 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
54 itgsinexplem1.3 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
55 ssidd 3967 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5619nncnd 12169 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
5755, 56, 55constcncfg 44103 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑁) ∈ (ℂ–cn→ℂ))
58 nnm1nn0 12454 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
5919, 58syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
6030, 32, 59expcnfg 43822 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
6157, 60mulcncf 24810 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑁 · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
62 cosf 16007 . . . . . . . . . . 11 cos:ℂ⟶ℂ
6362a1i 11 . . . . . . . . . 10 (𝜑 → cos:ℂ⟶ℂ)
6463feqmptd 6910 . . . . . . . . 9 (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
6564, 48eqeltrrdi 2847 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
6661, 65mulcncf 24810 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ (ℂ–cn→ℂ))
6754, 66eqeltrid 2842 . . . . . 6 (𝜑𝐻 ∈ (ℂ–cn→ℂ))
68 ioosscn 13326 . . . . . . 7 (0(,)π) ⊆ ℂ
6968a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ℂ)
7056adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℂ)
7168sseli 3940 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
7271sincld 16012 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
7372adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
7459adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 1) ∈ ℕ0)
7573, 74expcld 14051 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
7670, 75mulcld 11175 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
7771coscld 16013 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ ℂ)
7877adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘𝑥) ∈ ℂ)
7976, 78mulcld 11175 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
8054, 67, 69, 55, 79cncfmptssg 44102 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ ((0(,)π)–cn→ℂ))
8130, 32, 69cncfmptss 43818 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
82 ioossicc 13350 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
8382a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
84 ioombl 24929 . . . . . . 7 (0(,)π) ∈ dom vol
8584a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
8622, 18mulcld 11175 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ)
87 itgsinexplem1.4 . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8887fvmpt2 6959 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8916, 86, 88syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9089eqcomd 2742 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) = (𝐼𝑥))
9190mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) = (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)))
92 nfmpt1 5213 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9387, 92nfcxfr 2905 . . . . . . . . 9 𝑥𝐼
94 sinf 16006 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → sin:ℂ⟶ℂ)
9695feqmptd 6910 . . . . . . . . . . . 12 (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
9796, 31eqeltrrdi 2847 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (sin‘𝑥)) ∈ (ℂ–cn→ℂ))
9833, 97mulcncf 24810 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ (ℂ–cn→ℂ))
9987, 98eqeltrid 2842 . . . . . . . . 9 (𝜑𝐼 ∈ (ℂ–cn→ℂ))
10093, 99, 35cncfmptss 43818 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)) ∈ ((0[,]π)–cn→ℂ))
10191, 100eqeltrd 2838 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
102 cniccibl 25205 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
1034, 6, 101, 102syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10483, 85, 86, 103iblss 25169 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10556adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℂ)
10659adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 1) ∈ ℕ0)
10718, 106expcld 14051 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
108105, 107mulcld 11175 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
10938adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
110108, 109mulcld 11175 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
11139adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
112110, 111mulcld 11175 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) ∈ ℂ)
113 itgsinexplem1.5 . . . . . . . 8 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
114 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
115114negfcncf 24286 . . . . . . . . . . 11 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11649, 115syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11766, 116mulcncf 24810 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ (ℂ–cn→ℂ))
118113, 117eqeltrid 2842 . . . . . . . 8 (𝜑𝐿 ∈ (ℂ–cn→ℂ))
119113, 118, 35, 55, 112cncfmptssg 44102 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
120 cniccibl 25205 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
1214, 6, 119, 120syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
12283, 85, 112, 121iblss 25169 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
123 reelprrecn 11143 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
125 recn 11141 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
126125sincld 16012 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
127126adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
12820adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℕ0)
129127, 128expcld 14051 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
13056adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
13159adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑁 − 1) ∈ ℕ0)
132127, 131expcld 14051 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
133130, 132mulcld 11175 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
134125coscld 16013 . . . . . . . 8 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
135134adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
136133, 135mulcld 11175 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
137 sincl 16008 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
138137adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
13920adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
140138, 139expcld 14051 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
141140, 23fmptd 7062 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
142125adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
143 elex 3463 . . . . . . . . . . . . . . 15 (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
144136, 143syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
145 rabid 3427 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V} ↔ (𝑥 ∈ ℂ ∧ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V))
146142, 144, 145sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V})
14754dmmpt 6192 . . . . . . . . . . . . 13 dom 𝐻 = {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V}
148146, 147eleqtrrdi 2849 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ dom 𝐻)
149148ex 413 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
150149alrimiv 1930 . . . . . . . . . 10 (𝜑 → ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
151 nfcv 2907 . . . . . . . . . . 11 𝑥
152 nfmpt1 5213 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
15354, 152nfcxfr 2905 . . . . . . . . . . . 12 𝑥𝐻
154153nfdm 5906 . . . . . . . . . . 11 𝑥dom 𝐻
155151, 154dfss2f 3934 . . . . . . . . . 10 (ℝ ⊆ dom 𝐻 ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
156150, 155sylibr 233 . . . . . . . . 9 (𝜑 → ℝ ⊆ dom 𝐻)
15719dvsinexp 44142 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
15823oveq2i 7368 . . . . . . . . . . 11 (ℂ D 𝐹) = (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)))
159157, 158, 543eqtr4g 2801 . . . . . . . . . 10 (𝜑 → (ℂ D 𝐹) = 𝐻)
160159dmeqd 5861 . . . . . . . . 9 (𝜑 → dom (ℂ D 𝐹) = dom 𝐻)
161156, 160sseqtrrd 3985 . . . . . . . 8 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
162 dvres3 25277 . . . . . . . 8 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
163124, 141, 55, 161, 162syl22anc 837 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
16423reseq1i 5933 . . . . . . . . . 10 (𝐹 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ)
165 resmpt 5991 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
16613, 165ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
167164, 166eqtri 2764 . . . . . . . . 9 (𝐹 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
168167oveq2i 7368 . . . . . . . 8 (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
169168a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))))
170159reseq1d 5936 . . . . . . . 8 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝐻 ↾ ℝ))
17154reseq1i 5933 . . . . . . . . 9 (𝐻 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ)
172 resmpt 5991 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17313, 172ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
174171, 173eqtri 2764 . . . . . . . 8 (𝐻 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
175170, 174eqtrdi 2792 . . . . . . 7 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
176163, 169, 1753eqtr3d 2784 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17712a1i 11 . . . . . 6 (𝜑 → (0[,]π) ⊆ ℝ)
178 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
179178tgioo2 24166 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
18010a1i 11 . . . . . . 7 (𝜑 → (0 ∈ ℝ ∧ π ∈ ℝ))
181 iccntr 24184 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
182180, 181syl 17 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
183124, 129, 136, 176, 177, 179, 178, 182dvmptres2 25326 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
184134negcld 11499 . . . . . . 7 (𝑥 ∈ ℝ → -(cos‘𝑥) ∈ ℂ)
185184adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
186126negcld 11499 . . . . . . . . 9 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
187186adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
188 dvcosre 44143 . . . . . . . . 9 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
189188a1i 11 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
190124, 135, 187, 189dvmptneg 25330 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
191126negnegd 11503 . . . . . . . . 9 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
192191adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → --(sin‘𝑥) = (sin‘𝑥))
193192mpteq2dva 5205 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
194190, 193eqtrd 2776 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
195124, 185, 127, 194, 177, 179, 178, 182dvmptres2 25326 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
196 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 0 → (sin‘𝑥) = (sin‘0))
197 sin0 16031 . . . . . . . . . . 11 (sin‘0) = 0
198196, 197eqtrdi 2792 . . . . . . . . . 10 (𝑥 = 0 → (sin‘𝑥) = 0)
199198oveq1d 7372 . . . . . . . . 9 (𝑥 = 0 → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
200199adantl 482 . . . . . . . 8 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
20119adantr 481 . . . . . . . . 9 ((𝜑𝑥 = 0) → 𝑁 ∈ ℕ)
2022010expd 14044 . . . . . . . 8 ((𝜑𝑥 = 0) → (0↑𝑁) = 0)
203200, 202eqtrd 2776 . . . . . . 7 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = 0)
204203oveq1d 7372 . . . . . 6 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
205 id 22 . . . . . . . . . 10 (𝑥 = 0 → 𝑥 = 0)
206 0cn 11147 . . . . . . . . . 10 0 ∈ ℂ
207205, 206eqeltrdi 2846 . . . . . . . . 9 (𝑥 = 0 → 𝑥 ∈ ℂ)
208 coscl 16009 . . . . . . . . . 10 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
209208negcld 11499 . . . . . . . . 9 (𝑥 ∈ ℂ → -(cos‘𝑥) ∈ ℂ)
210207, 209syl 17 . . . . . . . 8 (𝑥 = 0 → -(cos‘𝑥) ∈ ℂ)
211210adantl 482 . . . . . . 7 ((𝜑𝑥 = 0) → -(cos‘𝑥) ∈ ℂ)
212211mul02d 11353 . . . . . 6 ((𝜑𝑥 = 0) → (0 · -(cos‘𝑥)) = 0)
213204, 212eqtrd 2776 . . . . 5 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
214 fveq2 6842 . . . . . . . . . . 11 (𝑥 = π → (sin‘𝑥) = (sin‘π))
215 sinpi 25814 . . . . . . . . . . 11 (sin‘π) = 0
216214, 215eqtrdi 2792 . . . . . . . . . 10 (𝑥 = π → (sin‘𝑥) = 0)
217216oveq1d 7372 . . . . . . . . 9 (𝑥 = π → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
218217adantl 482 . . . . . . . 8 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
21919adantr 481 . . . . . . . . 9 ((𝜑𝑥 = π) → 𝑁 ∈ ℕ)
2202190expd 14044 . . . . . . . 8 ((𝜑𝑥 = π) → (0↑𝑁) = 0)
221218, 220eqtrd 2776 . . . . . . 7 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = 0)
222221oveq1d 7372 . . . . . 6 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
223 id 22 . . . . . . . . . . 11 (𝑥 = π → 𝑥 = π)
224 picn 25816 . . . . . . . . . . 11 π ∈ ℂ
225223, 224eqeltrdi 2846 . . . . . . . . . 10 (𝑥 = π → 𝑥 ∈ ℂ)
226225coscld 16013 . . . . . . . . 9 (𝑥 = π → (cos‘𝑥) ∈ ℂ)
227226negcld 11499 . . . . . . . 8 (𝑥 = π → -(cos‘𝑥) ∈ ℂ)
228227adantl 482 . . . . . . 7 ((𝜑𝑥 = π) → -(cos‘𝑥) ∈ ℂ)
229228mul02d 11353 . . . . . 6 ((𝜑𝑥 = π) → (0 · -(cos‘𝑥)) = 0)
230222, 229eqtrd 2776 . . . . 5 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
2314, 6, 9, 37, 53, 80, 81, 104, 122, 183, 195, 213, 230itgparts 25411 . . . 4 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
232 df-neg 11388 . . . . 5 -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
233232a1i 11 . . . 4 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
2342, 231, 2333eqtr4a 2802 . . 3 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
23576, 78, 78mulassd 11178 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))))
236 sqval 14020 . . . . . . . . . . . . . 14 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥)↑2) = ((cos‘𝑥) · (cos‘𝑥)))
237236eqcomd 2742 . . . . . . . . . . . . 13 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
23877, 237syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
239238adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
240239oveq2d 7373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)))
24177sqcld 14049 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) ∈ ℂ)
242241adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥)↑2) ∈ ℂ)
24370, 75, 242mulassd 11178 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
244240, 243eqtrd 2776 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
24575, 242mulcomd 11176 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2)) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
246245oveq2d 7373 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
247235, 244, 2463eqtrd 2780 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
248247negeqd 11395 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
24979, 78mulneg2d 11609 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)))
250242, 75mulcld 11175 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
25170, 250mulneg1d 11608 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
252248, 249, 2513eqtr4d 2786 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
253252itgeq2dv 25146 . . . . 5 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
25456negcld 11499 . . . . . 6 (𝜑 → -𝑁 ∈ ℂ)
25538sqcld 14049 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → ((cos‘𝑥)↑2) ∈ ℂ)
256255adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((cos‘𝑥)↑2) ∈ ℂ)
257256, 107mulcld 11175 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
258 itgsinexplem1.6 . . . . . . . . . . . . 13 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
259258fvmpt2 6959 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
26016, 257, 259syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
261260eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) = (𝑀𝑥))
262261mpteq2dva 5205 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)))
263 nfmpt1 5213 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
264258, 263nfcxfr 2905 . . . . . . . . . 10 𝑥𝑀
265 nfcv 2907 . . . . . . . . . . . . 13 𝑥cos
266 2nn0 12430 . . . . . . . . . . . . . 14 2 ∈ ℕ0
267266a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ0)
268265, 49, 267expcnfg 43822 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((cos‘𝑥)↑2)) ∈ (ℂ–cn→ℂ))
269268, 60mulcncf 24810 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
270258, 269eqeltrid 2842 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℂ–cn→ℂ))
271264, 270, 35cncfmptss 43818 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)) ∈ ((0[,]π)–cn→ℂ))
272262, 271eqeltrd 2838 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ))
273 cniccibl 25205 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
2744, 6, 272, 273syl3anc 1371 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
27583, 85, 257, 274iblss 25169 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
276254, 250, 275itgmulc2 25198 . . . . 5 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
277253, 276eqtr4d 2779 . . . 4 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
278277negeqd 11395 . . 3 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
279234, 278eqtrd 2776 . 2 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
280250, 275itgcl 25148 . . . 4 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥 ∈ ℂ)
28156, 280mulneg1d 11608 . . 3 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = -(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
282281negeqd 11395 . 2 (𝜑 → -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
28356, 280mulcld 11175 . . 3 (𝜑 → (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) ∈ ℂ)
284283negnegd 11503 . 2 (𝜑 → --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
285279, 282, 2843eqtrd 2780 1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  wss 3910  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  cmin 11385  -cneg 11386  cn 12153  2c2 12208  0cn0 12413  (,)cioo 13264  [,]cicc 13267  cexp 13967  sincsin 15946  cosccos 15947  πcpi 15949  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  intcnt 22368  cnccncf 24239  volcvol 24827  𝐿1cibl 24981  citg 24982   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  itgsinexp  44186
  Copyright terms: Public domain W3C validator