Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Visualization version   GIF version

Theorem itgsinexplem1 45909
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
itgsinexplem1.2 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
itgsinexplem1.3 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
itgsinexplem1.4 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
itgsinexplem1.5 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
itgsinexplem1.6 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
itgsinexplem1.7 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
itgsinexplem1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝐿(𝑥)   𝑀(𝑥)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 12383 . . . . 5 (0 − 0) = 0
21oveq1i 7440 . . . 4 ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥) = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
3 0re 11260 . . . . . 6 0 ∈ ℝ
43a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ)
5 pire 26514 . . . . . 6 π ∈ ℝ
65a1i 11 . . . . 5 (𝜑 → π ∈ ℝ)
7 pipos 26516 . . . . . . 7 0 < π
83, 5, 7ltleii 11381 . . . . . 6 0 ≤ π
98a1i 11 . . . . 5 (𝜑 → 0 ≤ π)
103, 5pm3.2i 470 . . . . . . . . . . . . 13 (0 ∈ ℝ ∧ π ∈ ℝ)
11 iccssre 13465 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
13 ax-resscn 11209 . . . . . . . . . . . 12 ℝ ⊆ ℂ
1412, 13sstri 4004 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
1514sseli 3990 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
1715sincld 16162 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
19 itgsinexplem1.7 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2019nnnn0d 12584 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
2218, 21expcld 14182 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
23 itgsinexplem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2423fvmpt2 7026 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2516, 22, 24syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2625eqcomd 2740 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = (𝐹𝑥))
2726mpteq2dva 5247 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)))
28 nfmpt1 5255 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2923, 28nfcxfr 2900 . . . . . . 7 𝑥𝐹
30 nfcv 2902 . . . . . . . . 9 𝑥sin
31 sincn 26502 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3330, 32, 20expcnfg 45546 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
3423, 33eqeltrid 2842 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
3514a1i 11 . . . . . . 7 (𝜑 → (0[,]π) ⊆ ℂ)
3629, 34, 35cncfmptss 45542 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)) ∈ ((0[,]π)–cn→ℂ))
3727, 36eqeltrd 2838 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
3815coscld 16163 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
3938negcld 11604 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
40 itgsinexplem1.2 . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4140fvmpt2 7026 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → (𝐺𝑥) = -(cos‘𝑥))
4215, 39, 41syl2anc 584 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → (𝐺𝑥) = -(cos‘𝑥))
4342eqcomd 2740 . . . . . . . 8 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = (𝐺𝑥))
4443adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) = (𝐺𝑥))
4544mpteq2dva 5247 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)))
46 nfmpt1 5255 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4740, 46nfcxfr 2900 . . . . . . 7 𝑥𝐺
48 coscn 26503 . . . . . . . . 9 cos ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . . . . 8 (𝜑 → cos ∈ (ℂ–cn→ℂ))
5040negfcncf 24963 . . . . . . . 8 (cos ∈ (ℂ–cn→ℂ) → 𝐺 ∈ (ℂ–cn→ℂ))
5149, 50syl 17 . . . . . . 7 (𝜑𝐺 ∈ (ℂ–cn→ℂ))
5247, 51, 35cncfmptss 45542 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)) ∈ ((0[,]π)–cn→ℂ))
5345, 52eqeltrd 2838 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
54 itgsinexplem1.3 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
55 ssidd 4018 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5619nncnd 12279 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
5755, 56, 55constcncfg 45827 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑁) ∈ (ℂ–cn→ℂ))
58 nnm1nn0 12564 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
5919, 58syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
6030, 32, 59expcnfg 45546 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
6157, 60mulcncf 25493 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑁 · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
62 cosf 16157 . . . . . . . . . . 11 cos:ℂ⟶ℂ
6362a1i 11 . . . . . . . . . 10 (𝜑 → cos:ℂ⟶ℂ)
6463feqmptd 6976 . . . . . . . . 9 (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
6564, 48eqeltrrdi 2847 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
6661, 65mulcncf 25493 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ (ℂ–cn→ℂ))
6754, 66eqeltrid 2842 . . . . . 6 (𝜑𝐻 ∈ (ℂ–cn→ℂ))
68 ioosscn 13445 . . . . . . 7 (0(,)π) ⊆ ℂ
6968a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ℂ)
7056adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℂ)
7168sseli 3990 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
7271sincld 16162 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
7372adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
7459adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 1) ∈ ℕ0)
7573, 74expcld 14182 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
7670, 75mulcld 11278 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
7771coscld 16163 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ ℂ)
7877adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘𝑥) ∈ ℂ)
7976, 78mulcld 11278 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
8054, 67, 69, 55, 79cncfmptssg 45826 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ ((0(,)π)–cn→ℂ))
8130, 32, 69cncfmptss 45542 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
82 ioossicc 13469 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
8382a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
84 ioombl 25613 . . . . . . 7 (0(,)π) ∈ dom vol
8584a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
8622, 18mulcld 11278 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ)
87 itgsinexplem1.4 . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8887fvmpt2 7026 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8916, 86, 88syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9089eqcomd 2740 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) = (𝐼𝑥))
9190mpteq2dva 5247 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) = (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)))
92 nfmpt1 5255 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9387, 92nfcxfr 2900 . . . . . . . . 9 𝑥𝐼
94 sinf 16156 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → sin:ℂ⟶ℂ)
9695feqmptd 6976 . . . . . . . . . . . 12 (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
9796, 31eqeltrrdi 2847 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (sin‘𝑥)) ∈ (ℂ–cn→ℂ))
9833, 97mulcncf 25493 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ (ℂ–cn→ℂ))
9987, 98eqeltrid 2842 . . . . . . . . 9 (𝜑𝐼 ∈ (ℂ–cn→ℂ))
10093, 99, 35cncfmptss 45542 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)) ∈ ((0[,]π)–cn→ℂ))
10191, 100eqeltrd 2838 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
102 cniccibl 25890 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
1034, 6, 101, 102syl3anc 1370 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10483, 85, 86, 103iblss 25854 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10556adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℂ)
10659adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 1) ∈ ℕ0)
10718, 106expcld 14182 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
108105, 107mulcld 11278 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
10938adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
110108, 109mulcld 11278 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
11139adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
112110, 111mulcld 11278 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) ∈ ℂ)
113 itgsinexplem1.5 . . . . . . . 8 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
114 eqid 2734 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
115114negfcncf 24963 . . . . . . . . . . 11 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11649, 115syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11766, 116mulcncf 25493 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ (ℂ–cn→ℂ))
118113, 117eqeltrid 2842 . . . . . . . 8 (𝜑𝐿 ∈ (ℂ–cn→ℂ))
119113, 118, 35, 55, 112cncfmptssg 45826 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
120 cniccibl 25890 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
1214, 6, 119, 120syl3anc 1370 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
12283, 85, 112, 121iblss 25854 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
123 reelprrecn 11244 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
125 recn 11242 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
126125sincld 16162 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
127126adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
12820adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℕ0)
129127, 128expcld 14182 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
13056adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
13159adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑁 − 1) ∈ ℕ0)
132127, 131expcld 14182 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
133130, 132mulcld 11278 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
134125coscld 16163 . . . . . . . 8 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
135134adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
136133, 135mulcld 11278 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
137 sincl 16158 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
138137adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
13920adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
140138, 139expcld 14182 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
141140, 23fmptd 7133 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
142125adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
143 elex 3498 . . . . . . . . . . . . . . 15 (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
144136, 143syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
145 rabid 3454 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V} ↔ (𝑥 ∈ ℂ ∧ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V))
146142, 144, 145sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V})
14754dmmpt 6261 . . . . . . . . . . . . 13 dom 𝐻 = {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V}
148146, 147eleqtrrdi 2849 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ dom 𝐻)
149148ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
150149alrimiv 1924 . . . . . . . . . 10 (𝜑 → ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
151 nfcv 2902 . . . . . . . . . . 11 𝑥
152 nfmpt1 5255 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
15354, 152nfcxfr 2900 . . . . . . . . . . . 12 𝑥𝐻
154153nfdm 5964 . . . . . . . . . . 11 𝑥dom 𝐻
155151, 154dfssf 3985 . . . . . . . . . 10 (ℝ ⊆ dom 𝐻 ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
156150, 155sylibr 234 . . . . . . . . 9 (𝜑 → ℝ ⊆ dom 𝐻)
15719dvsinexp 45866 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
15823oveq2i 7441 . . . . . . . . . . 11 (ℂ D 𝐹) = (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)))
159157, 158, 543eqtr4g 2799 . . . . . . . . . 10 (𝜑 → (ℂ D 𝐹) = 𝐻)
160159dmeqd 5918 . . . . . . . . 9 (𝜑 → dom (ℂ D 𝐹) = dom 𝐻)
161156, 160sseqtrrd 4036 . . . . . . . 8 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
162 dvres3 25962 . . . . . . . 8 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
163124, 141, 55, 161, 162syl22anc 839 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
16423reseq1i 5995 . . . . . . . . . 10 (𝐹 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ)
165 resmpt 6056 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
16613, 165ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
167164, 166eqtri 2762 . . . . . . . . 9 (𝐹 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
168167oveq2i 7441 . . . . . . . 8 (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
169168a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))))
170159reseq1d 5998 . . . . . . . 8 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝐻 ↾ ℝ))
17154reseq1i 5995 . . . . . . . . 9 (𝐻 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ)
172 resmpt 6056 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17313, 172ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
174171, 173eqtri 2762 . . . . . . . 8 (𝐻 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
175170, 174eqtrdi 2790 . . . . . . 7 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
176163, 169, 1753eqtr3d 2782 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17712a1i 11 . . . . . 6 (𝜑 → (0[,]π) ⊆ ℝ)
178 eqid 2734 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
179178tgioo2 24838 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
18010a1i 11 . . . . . . 7 (𝜑 → (0 ∈ ℝ ∧ π ∈ ℝ))
181 iccntr 24856 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
182180, 181syl 17 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
183124, 129, 136, 176, 177, 179, 178, 182dvmptres2 26014 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
184134negcld 11604 . . . . . . 7 (𝑥 ∈ ℝ → -(cos‘𝑥) ∈ ℂ)
185184adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
186126negcld 11604 . . . . . . . . 9 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
187186adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
188 dvcosre 45867 . . . . . . . . 9 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
189188a1i 11 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
190124, 135, 187, 189dvmptneg 26018 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
191126negnegd 11608 . . . . . . . . 9 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
192191adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → --(sin‘𝑥) = (sin‘𝑥))
193192mpteq2dva 5247 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
194190, 193eqtrd 2774 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
195124, 185, 127, 194, 177, 179, 178, 182dvmptres2 26014 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
196 fveq2 6906 . . . . . . . . . . 11 (𝑥 = 0 → (sin‘𝑥) = (sin‘0))
197 sin0 16181 . . . . . . . . . . 11 (sin‘0) = 0
198196, 197eqtrdi 2790 . . . . . . . . . 10 (𝑥 = 0 → (sin‘𝑥) = 0)
199198oveq1d 7445 . . . . . . . . 9 (𝑥 = 0 → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
200199adantl 481 . . . . . . . 8 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
20119adantr 480 . . . . . . . . 9 ((𝜑𝑥 = 0) → 𝑁 ∈ ℕ)
2022010expd 14175 . . . . . . . 8 ((𝜑𝑥 = 0) → (0↑𝑁) = 0)
203200, 202eqtrd 2774 . . . . . . 7 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = 0)
204203oveq1d 7445 . . . . . 6 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
205 id 22 . . . . . . . . . 10 (𝑥 = 0 → 𝑥 = 0)
206 0cn 11250 . . . . . . . . . 10 0 ∈ ℂ
207205, 206eqeltrdi 2846 . . . . . . . . 9 (𝑥 = 0 → 𝑥 ∈ ℂ)
208 coscl 16159 . . . . . . . . . 10 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
209208negcld 11604 . . . . . . . . 9 (𝑥 ∈ ℂ → -(cos‘𝑥) ∈ ℂ)
210207, 209syl 17 . . . . . . . 8 (𝑥 = 0 → -(cos‘𝑥) ∈ ℂ)
211210adantl 481 . . . . . . 7 ((𝜑𝑥 = 0) → -(cos‘𝑥) ∈ ℂ)
212211mul02d 11456 . . . . . 6 ((𝜑𝑥 = 0) → (0 · -(cos‘𝑥)) = 0)
213204, 212eqtrd 2774 . . . . 5 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
214 fveq2 6906 . . . . . . . . . . 11 (𝑥 = π → (sin‘𝑥) = (sin‘π))
215 sinpi 26513 . . . . . . . . . . 11 (sin‘π) = 0
216214, 215eqtrdi 2790 . . . . . . . . . 10 (𝑥 = π → (sin‘𝑥) = 0)
217216oveq1d 7445 . . . . . . . . 9 (𝑥 = π → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
218217adantl 481 . . . . . . . 8 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
21919adantr 480 . . . . . . . . 9 ((𝜑𝑥 = π) → 𝑁 ∈ ℕ)
2202190expd 14175 . . . . . . . 8 ((𝜑𝑥 = π) → (0↑𝑁) = 0)
221218, 220eqtrd 2774 . . . . . . 7 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = 0)
222221oveq1d 7445 . . . . . 6 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
223 id 22 . . . . . . . . . . 11 (𝑥 = π → 𝑥 = π)
224 picn 26515 . . . . . . . . . . 11 π ∈ ℂ
225223, 224eqeltrdi 2846 . . . . . . . . . 10 (𝑥 = π → 𝑥 ∈ ℂ)
226225coscld 16163 . . . . . . . . 9 (𝑥 = π → (cos‘𝑥) ∈ ℂ)
227226negcld 11604 . . . . . . . 8 (𝑥 = π → -(cos‘𝑥) ∈ ℂ)
228227adantl 481 . . . . . . 7 ((𝜑𝑥 = π) → -(cos‘𝑥) ∈ ℂ)
229228mul02d 11456 . . . . . 6 ((𝜑𝑥 = π) → (0 · -(cos‘𝑥)) = 0)
230222, 229eqtrd 2774 . . . . 5 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
2314, 6, 9, 37, 53, 80, 81, 104, 122, 183, 195, 213, 230itgparts 26102 . . . 4 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
232 df-neg 11492 . . . . 5 -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
233232a1i 11 . . . 4 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
2342, 231, 2333eqtr4a 2800 . . 3 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
23576, 78, 78mulassd 11281 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))))
236 sqval 14151 . . . . . . . . . . . . . 14 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥)↑2) = ((cos‘𝑥) · (cos‘𝑥)))
237236eqcomd 2740 . . . . . . . . . . . . 13 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
23877, 237syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
239238adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
240239oveq2d 7446 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)))
24177sqcld 14180 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) ∈ ℂ)
242241adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥)↑2) ∈ ℂ)
24370, 75, 242mulassd 11281 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
244240, 243eqtrd 2774 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
24575, 242mulcomd 11279 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2)) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
246245oveq2d 7446 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
247235, 244, 2463eqtrd 2778 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
248247negeqd 11499 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
24979, 78mulneg2d 11714 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)))
250242, 75mulcld 11278 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
25170, 250mulneg1d 11713 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
252248, 249, 2513eqtr4d 2784 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
253252itgeq2dv 25831 . . . . 5 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
25456negcld 11604 . . . . . 6 (𝜑 → -𝑁 ∈ ℂ)
25538sqcld 14180 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → ((cos‘𝑥)↑2) ∈ ℂ)
256255adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((cos‘𝑥)↑2) ∈ ℂ)
257256, 107mulcld 11278 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
258 itgsinexplem1.6 . . . . . . . . . . . . 13 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
259258fvmpt2 7026 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
26016, 257, 259syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
261260eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) = (𝑀𝑥))
262261mpteq2dva 5247 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)))
263 nfmpt1 5255 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
264258, 263nfcxfr 2900 . . . . . . . . . 10 𝑥𝑀
265 nfcv 2902 . . . . . . . . . . . . 13 𝑥cos
266 2nn0 12540 . . . . . . . . . . . . . 14 2 ∈ ℕ0
267266a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ0)
268265, 49, 267expcnfg 45546 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((cos‘𝑥)↑2)) ∈ (ℂ–cn→ℂ))
269268, 60mulcncf 25493 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
270258, 269eqeltrid 2842 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℂ–cn→ℂ))
271264, 270, 35cncfmptss 45542 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)) ∈ ((0[,]π)–cn→ℂ))
272262, 271eqeltrd 2838 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ))
273 cniccibl 25890 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
2744, 6, 272, 273syl3anc 1370 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
27583, 85, 257, 274iblss 25854 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
276254, 250, 275itgmulc2 25883 . . . . 5 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
277253, 276eqtr4d 2777 . . . 4 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
278277negeqd 11499 . . 3 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
279234, 278eqtrd 2774 . 2 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
280250, 275itgcl 25833 . . . 4 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥 ∈ ℂ)
28156, 280mulneg1d 11713 . . 3 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = -(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
282281negeqd 11499 . 2 (𝜑 → -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
28356, 280mulcld 11278 . . 3 (𝜑 → (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) ∈ ℂ)
284283negnegd 11608 . 2 (𝜑 → --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
285279, 282, 2843eqtrd 2778 1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1534   = wceq 1536  wcel 2105  {crab 3432  Vcvv 3477  wss 3962  {cpr 4632   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  cle 11293  cmin 11489  -cneg 11490  cn 12263  2c2 12318  0cn0 12523  (,)cioo 13383  [,]cicc 13386  cexp 14098  sincsin 16095  cosccos 16096  πcpi 16098  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  intcnt 23040  cnccncf 24915  volcvol 25511  𝐿1cibl 25665  citg 25666   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-limc 25915  df-dv 25916
This theorem is referenced by:  itgsinexp  45910
  Copyright terms: Public domain W3C validator