MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Structured version   Visualization version   GIF version

Theorem acsfiindd 17616
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsfiindd.2 𝑁 = (mrCls‘𝐴)
acsfiindd.3 𝐼 = (mrInd‘𝐴)
acsfiindd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsfiindd (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))

Proof of Theorem acsfiindd
Dummy variables 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 16756 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
32ad2antrr 722 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐴 ∈ (Moore‘𝑋))
4 acsfiindd.2 . . . . 5 𝑁 = (mrCls‘𝐴)
5 acsfiindd.3 . . . . 5 𝐼 = (mrInd‘𝐴)
6 simplr 765 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐼)
7 simpr 485 . . . . . . 7 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ (𝒫 𝑆 ∩ Fin))
87elin1d 4096 . . . . . 6 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ 𝒫 𝑆)
98elpwid 4465 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝑆)
103, 4, 5, 6, 9mrissmrid 16741 . . . 4 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝐼)
1110ralrimiva 3149 . . 3 ((𝜑𝑆𝐼) → ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
12 dfss3 3878 . . 3 ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 ↔ ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
1311, 12sylibr 235 . 2 ((𝜑𝑆𝐼) → (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)
142adantr 481 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝐴 ∈ (Moore‘𝑋))
15 acsfiindd.4 . . . 4 (𝜑𝑆𝑋)
1615adantr 481 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝑋)
17 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin))
18 elfpw 8672 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ↔ (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
1917, 18sylib 219 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
2019simpld 495 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
2120difss2d 4032 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡𝑆)
22 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑥𝑆)
2322snssd 4649 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → {𝑥} ⊆ 𝑆)
2421, 23unssd 4083 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
2519simprd 496 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ Fin)
26 snfi 8442 . . . . . . . . . . . 12 {𝑥} ∈ Fin
27 unfi 8631 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝑡 ∪ {𝑥}) ∈ Fin)
2825, 26, 27sylancl 586 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ Fin)
29 elfpw 8672 . . . . . . . . . . 11 ((𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin) ↔ ((𝑡 ∪ {𝑥}) ⊆ 𝑆 ∧ (𝑡 ∪ {𝑥}) ∈ Fin))
3024, 28, 29sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin))
312ad4antr 728 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝐴 ∈ (Moore‘𝑋))
32 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑠𝐼)
33 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑆)
34 snidg 4504 . . . . . . . . . . . . . . . 16 (𝑥𝑆𝑥 ∈ {𝑥})
35 elun2 4074 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥} → 𝑥 ∈ (𝑡 ∪ {𝑥}))
3633, 34, 353syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥 ∈ (𝑡 ∪ {𝑥}))
37 simpr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠 = (𝑡 ∪ {𝑥}))
3836, 37eleqtrrd 2886 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑠)
3938adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑥𝑠)
404, 5, 31, 32, 39ismri2dad 16737 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
412ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝐴 ∈ (Moore‘𝑋))
4220adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
43 neldifsnd 4633 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥 ∈ (𝑆 ∖ {𝑥}))
4442, 43ssneldd 3892 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥𝑡)
45 difsnb 4646 . . . . . . . . . . . . . . . . 17 𝑥𝑡 ↔ (𝑡 ∖ {𝑥}) = 𝑡)
4644, 45sylib 219 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) = 𝑡)
47 ssun1 4069 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {𝑥})
4847, 37sseqtrrid 3941 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡𝑠)
4948ssdifd 4038 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) ⊆ (𝑠 ∖ {𝑥}))
5046, 49eqsstrrd 3927 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑠 ∖ {𝑥}))
5124adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
5215ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑆𝑋)
5351, 52sstrd 3899 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑋)
5437, 53eqsstrd 3926 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠𝑋)
5554ssdifssd 4040 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠 ∖ {𝑥}) ⊆ 𝑋)
5641, 4, 50, 55mrcssd 16724 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑁𝑡) ⊆ (𝑁‘(𝑠 ∖ {𝑥})))
5756sseld 3888 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5857adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5940, 58mtod 199 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁𝑡))
6059ex 413 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6130, 60rspcimdv 3560 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6212, 61syl5bi 243 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6362impancom 452 . . . . . . 7 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) → ¬ 𝑥 ∈ (𝑁𝑡)))
6463ralrimiv 3148 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡))
6515ssdifssd 4040 . . . . . . . . . 10 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
661, 4, 65acsficl2d 17615 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
6766notbid 319 . . . . . . . 8 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
68 ralnex 3200 . . . . . . . 8 (∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡))
6967, 68syl6bbr 290 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7069ad2antrr 722 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7164, 70mpbird 258 . . . . 5 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7271an32s 648 . . . 4 (((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7372ralrimiva 3149 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
744, 5, 14, 16, 73ismri2dd 16734 . 2 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝐼)
7513, 74impbida 797 1 (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  cdif 3856  cun 3857  cin 3858  wss 3859  𝒫 cpw 4453  {csn 4472  cfv 6225  Fincfn 8357  Moorecmre 16682  mrClscmrc 16683  mrIndcmri 16684  ACScacs 16685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-tset 16413  df-ple 16414  df-ocomp 16415  df-mre 16686  df-mrc 16687  df-mri 16688  df-acs 16689  df-proset 17367  df-drs 17368  df-poset 17385  df-ipo 17591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator