MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Structured version   Visualization version   GIF version

Theorem acsfiindd 18459
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsfiindd.2 𝑁 = (mrCls‘𝐴)
acsfiindd.3 𝐼 = (mrInd‘𝐴)
acsfiindd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsfiindd (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))

Proof of Theorem acsfiindd
Dummy variables 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 17562 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
32ad2antrr 726 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐴 ∈ (Moore‘𝑋))
4 acsfiindd.2 . . . . 5 𝑁 = (mrCls‘𝐴)
5 acsfiindd.3 . . . . 5 𝐼 = (mrInd‘𝐴)
6 simplr 768 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐼)
7 simpr 484 . . . . . . 7 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ (𝒫 𝑆 ∩ Fin))
87elin1d 4155 . . . . . 6 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ 𝒫 𝑆)
98elpwid 4560 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝑆)
103, 4, 5, 6, 9mrissmrid 17547 . . . 4 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝐼)
1110ralrimiva 3121 . . 3 ((𝜑𝑆𝐼) → ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
12 dfss3 3924 . . 3 ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 ↔ ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
1311, 12sylibr 234 . 2 ((𝜑𝑆𝐼) → (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)
142adantr 480 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝐴 ∈ (Moore‘𝑋))
15 acsfiindd.4 . . . 4 (𝜑𝑆𝑋)
1615adantr 480 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝑋)
17 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin))
18 elfpw 9244 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ↔ (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
1917, 18sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
2019simpld 494 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
2120difss2d 4090 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡𝑆)
22 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑥𝑆)
2322snssd 4760 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → {𝑥} ⊆ 𝑆)
2421, 23unssd 4143 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
2519simprd 495 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ Fin)
26 snfi 8968 . . . . . . . . . . . 12 {𝑥} ∈ Fin
27 unfi 9085 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝑡 ∪ {𝑥}) ∈ Fin)
2825, 26, 27sylancl 586 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ Fin)
29 elfpw 9244 . . . . . . . . . . 11 ((𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin) ↔ ((𝑡 ∪ {𝑥}) ⊆ 𝑆 ∧ (𝑡 ∪ {𝑥}) ∈ Fin))
3024, 28, 29sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin))
312ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝐴 ∈ (Moore‘𝑋))
32 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑠𝐼)
33 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑆)
34 snidg 4612 . . . . . . . . . . . . . . . 16 (𝑥𝑆𝑥 ∈ {𝑥})
35 elun2 4134 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥} → 𝑥 ∈ (𝑡 ∪ {𝑥}))
3633, 34, 353syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥 ∈ (𝑡 ∪ {𝑥}))
37 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠 = (𝑡 ∪ {𝑥}))
3836, 37eleqtrrd 2831 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑠)
3938adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑥𝑠)
404, 5, 31, 32, 39ismri2dad 17543 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
412ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝐴 ∈ (Moore‘𝑋))
4220adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
43 neldifsnd 4744 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥 ∈ (𝑆 ∖ {𝑥}))
4442, 43ssneldd 3938 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥𝑡)
45 difsnb 4757 . . . . . . . . . . . . . . . . 17 𝑥𝑡 ↔ (𝑡 ∖ {𝑥}) = 𝑡)
4644, 45sylib 218 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) = 𝑡)
47 ssun1 4129 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {𝑥})
4847, 37sseqtrrid 3979 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡𝑠)
4948ssdifd 4096 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) ⊆ (𝑠 ∖ {𝑥}))
5046, 49eqsstrrd 3971 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑠 ∖ {𝑥}))
5124adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
5215ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑆𝑋)
5351, 52sstrd 3946 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑋)
5437, 53eqsstrd 3970 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠𝑋)
5554ssdifssd 4098 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠 ∖ {𝑥}) ⊆ 𝑋)
5641, 4, 50, 55mrcssd 17530 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑁𝑡) ⊆ (𝑁‘(𝑠 ∖ {𝑥})))
5756sseld 3934 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5857adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5940, 58mtod 198 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁𝑡))
6059ex 412 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6130, 60rspcimdv 3567 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6212, 61biimtrid 242 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6362impancom 451 . . . . . . 7 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) → ¬ 𝑥 ∈ (𝑁𝑡)))
6463ralrimiv 3120 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡))
6515ssdifssd 4098 . . . . . . . . . 10 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
661, 4, 65acsficl2d 18458 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
6766notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
68 ralnex 3055 . . . . . . . 8 (∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡))
6967, 68bitr4di 289 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7069ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7164, 70mpbird 257 . . . . 5 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7271an32s 652 . . . 4 (((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7372ralrimiva 3121 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
744, 5, 14, 16, 73ismri2dd 17540 . 2 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝐼)
7513, 74impbida 800 1 (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3900  cun 3901  cin 3902  wss 3903  𝒫 cpw 4551  {csn 4577  cfv 6482  Fincfn 8872  Moorecmre 17484  mrClscmrc 17485  mrIndcmri 17486  ACScacs 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-tset 17180  df-ple 17181  df-ocomp 17182  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator