MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Structured version   Visualization version   GIF version

Theorem acsfiindd 18442
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsfiindd.2 𝑁 = (mrCls‘𝐴)
acsfiindd.3 𝐼 = (mrInd‘𝐴)
acsfiindd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsfiindd (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))

Proof of Theorem acsfiindd
Dummy variables 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 17536 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
32ad2antrr 724 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐴 ∈ (Moore‘𝑋))
4 acsfiindd.2 . . . . 5 𝑁 = (mrCls‘𝐴)
5 acsfiindd.3 . . . . 5 𝐼 = (mrInd‘𝐴)
6 simplr 767 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐼)
7 simpr 485 . . . . . . 7 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ (𝒫 𝑆 ∩ Fin))
87elin1d 4158 . . . . . 6 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ 𝒫 𝑆)
98elpwid 4569 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝑆)
103, 4, 5, 6, 9mrissmrid 17521 . . . 4 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝐼)
1110ralrimiva 3143 . . 3 ((𝜑𝑆𝐼) → ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
12 dfss3 3932 . . 3 ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 ↔ ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
1311, 12sylibr 233 . 2 ((𝜑𝑆𝐼) → (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)
142adantr 481 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝐴 ∈ (Moore‘𝑋))
15 acsfiindd.4 . . . 4 (𝜑𝑆𝑋)
1615adantr 481 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝑋)
17 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin))
18 elfpw 9298 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ↔ (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
1917, 18sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
2019simpld 495 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
2120difss2d 4094 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡𝑆)
22 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑥𝑆)
2322snssd 4769 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → {𝑥} ⊆ 𝑆)
2421, 23unssd 4146 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
2519simprd 496 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ Fin)
26 snfi 8988 . . . . . . . . . . . 12 {𝑥} ∈ Fin
27 unfi 9116 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝑡 ∪ {𝑥}) ∈ Fin)
2825, 26, 27sylancl 586 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ Fin)
29 elfpw 9298 . . . . . . . . . . 11 ((𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin) ↔ ((𝑡 ∪ {𝑥}) ⊆ 𝑆 ∧ (𝑡 ∪ {𝑥}) ∈ Fin))
3024, 28, 29sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin))
312ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝐴 ∈ (Moore‘𝑋))
32 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑠𝐼)
33 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑆)
34 snidg 4620 . . . . . . . . . . . . . . . 16 (𝑥𝑆𝑥 ∈ {𝑥})
35 elun2 4137 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥} → 𝑥 ∈ (𝑡 ∪ {𝑥}))
3633, 34, 353syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥 ∈ (𝑡 ∪ {𝑥}))
37 simpr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠 = (𝑡 ∪ {𝑥}))
3836, 37eleqtrrd 2841 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑠)
3938adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑥𝑠)
404, 5, 31, 32, 39ismri2dad 17517 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
412ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝐴 ∈ (Moore‘𝑋))
4220adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
43 neldifsnd 4753 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥 ∈ (𝑆 ∖ {𝑥}))
4442, 43ssneldd 3947 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥𝑡)
45 difsnb 4766 . . . . . . . . . . . . . . . . 17 𝑥𝑡 ↔ (𝑡 ∖ {𝑥}) = 𝑡)
4644, 45sylib 217 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) = 𝑡)
47 ssun1 4132 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {𝑥})
4847, 37sseqtrrid 3997 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡𝑠)
4948ssdifd 4100 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) ⊆ (𝑠 ∖ {𝑥}))
5046, 49eqsstrrd 3983 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑠 ∖ {𝑥}))
5124adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
5215ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑆𝑋)
5351, 52sstrd 3954 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑋)
5437, 53eqsstrd 3982 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠𝑋)
5554ssdifssd 4102 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠 ∖ {𝑥}) ⊆ 𝑋)
5641, 4, 50, 55mrcssd 17504 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑁𝑡) ⊆ (𝑁‘(𝑠 ∖ {𝑥})))
5756sseld 3943 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5857adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5940, 58mtod 197 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁𝑡))
6059ex 413 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6130, 60rspcimdv 3571 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6212, 61biimtrid 241 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6362impancom 452 . . . . . . 7 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) → ¬ 𝑥 ∈ (𝑁𝑡)))
6463ralrimiv 3142 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡))
6515ssdifssd 4102 . . . . . . . . . 10 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
661, 4, 65acsficl2d 18441 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
6766notbid 317 . . . . . . . 8 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
68 ralnex 3075 . . . . . . . 8 (∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡))
6967, 68bitr4di 288 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7069ad2antrr 724 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7164, 70mpbird 256 . . . . 5 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7271an32s 650 . . . 4 (((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7372ralrimiva 3143 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
744, 5, 14, 16, 73ismri2dd 17514 . 2 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝐼)
7513, 74impbida 799 1 (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cdif 3907  cun 3908  cin 3909  wss 3910  𝒫 cpw 4560  {csn 4586  cfv 6496  Fincfn 8883  Moorecmre 17462  mrClscmrc 17463  mrIndcmri 17464  ACScacs 17465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-tset 17152  df-ple 17153  df-ocomp 17154  df-mre 17466  df-mrc 17467  df-mri 17468  df-acs 17469  df-proset 18184  df-drs 18185  df-poset 18202  df-ipo 18417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator