MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Structured version   Visualization version   GIF version

Theorem acsfiindd 18623
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsfiindd.2 𝑁 = (mrCls‘𝐴)
acsfiindd.3 𝐼 = (mrInd‘𝐴)
acsfiindd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsfiindd (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))

Proof of Theorem acsfiindd
Dummy variables 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 17714 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
32ad2antrr 725 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝐴 ∈ (Moore‘𝑋))
4 acsfiindd.2 . . . . 5 𝑁 = (mrCls‘𝐴)
5 acsfiindd.3 . . . . 5 𝐼 = (mrInd‘𝐴)
6 simplr 768 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑆𝐼)
7 simpr 484 . . . . . . 7 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ (𝒫 𝑆 ∩ Fin))
87elin1d 4227 . . . . . 6 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠 ∈ 𝒫 𝑆)
98elpwid 4631 . . . . 5 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝑆)
103, 4, 5, 6, 9mrissmrid 17699 . . . 4 (((𝜑𝑆𝐼) ∧ 𝑠 ∈ (𝒫 𝑆 ∩ Fin)) → 𝑠𝐼)
1110ralrimiva 3152 . . 3 ((𝜑𝑆𝐼) → ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
12 dfss3 3997 . . 3 ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 ↔ ∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼)
1311, 12sylibr 234 . 2 ((𝜑𝑆𝐼) → (𝒫 𝑆 ∩ Fin) ⊆ 𝐼)
142adantr 480 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝐴 ∈ (Moore‘𝑋))
15 acsfiindd.4 . . . 4 (𝜑𝑆𝑋)
1615adantr 480 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝑋)
17 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin))
18 elfpw 9424 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ↔ (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
1917, 18sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ⊆ (𝑆 ∖ {𝑥}) ∧ 𝑡 ∈ Fin))
2019simpld 494 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
2120difss2d 4162 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡𝑆)
22 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑥𝑆)
2322snssd 4834 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → {𝑥} ⊆ 𝑆)
2421, 23unssd 4215 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
2519simprd 495 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → 𝑡 ∈ Fin)
26 snfi 9109 . . . . . . . . . . . 12 {𝑥} ∈ Fin
27 unfi 9238 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝑡 ∪ {𝑥}) ∈ Fin)
2825, 26, 27sylancl 585 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ Fin)
29 elfpw 9424 . . . . . . . . . . 11 ((𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin) ↔ ((𝑡 ∪ {𝑥}) ⊆ 𝑆 ∧ (𝑡 ∪ {𝑥}) ∈ Fin))
3024, 28, 29sylanbrc 582 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (𝑡 ∪ {𝑥}) ∈ (𝒫 𝑆 ∩ Fin))
312ad4antr 731 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝐴 ∈ (Moore‘𝑋))
32 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑠𝐼)
33 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑆)
34 snidg 4682 . . . . . . . . . . . . . . . 16 (𝑥𝑆𝑥 ∈ {𝑥})
35 elun2 4206 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥} → 𝑥 ∈ (𝑡 ∪ {𝑥}))
3633, 34, 353syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥 ∈ (𝑡 ∪ {𝑥}))
37 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠 = (𝑡 ∪ {𝑥}))
3836, 37eleqtrrd 2847 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑥𝑠)
3938adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → 𝑥𝑠)
404, 5, 31, 32, 39ismri2dad 17695 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
412ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝐴 ∈ (Moore‘𝑋))
4220adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑆 ∖ {𝑥}))
43 neldifsnd 4818 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥 ∈ (𝑆 ∖ {𝑥}))
4442, 43ssneldd 4011 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → ¬ 𝑥𝑡)
45 difsnb 4831 . . . . . . . . . . . . . . . . 17 𝑥𝑡 ↔ (𝑡 ∖ {𝑥}) = 𝑡)
4644, 45sylib 218 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) = 𝑡)
47 ssun1 4201 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {𝑥})
4847, 37sseqtrrid 4062 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡𝑠)
4948ssdifd 4168 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∖ {𝑥}) ⊆ (𝑠 ∖ {𝑥}))
5046, 49eqsstrrd 4048 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑡 ⊆ (𝑠 ∖ {𝑥}))
5124adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑆)
5215ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑆𝑋)
5351, 52sstrd 4019 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑡 ∪ {𝑥}) ⊆ 𝑋)
5437, 53eqsstrd 4047 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → 𝑠𝑋)
5554ssdifssd 4170 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠 ∖ {𝑥}) ⊆ 𝑋)
5641, 4, 50, 55mrcssd 17682 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑁𝑡) ⊆ (𝑁‘(𝑠 ∖ {𝑥})))
5756sseld 4007 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5857adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → (𝑥 ∈ (𝑁𝑡) → 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
5940, 58mtod 198 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) ∧ 𝑠𝐼) → ¬ 𝑥 ∈ (𝑁𝑡))
6059ex 412 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) ∧ 𝑠 = (𝑡 ∪ {𝑥})) → (𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6130, 60rspcimdv 3625 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → (∀𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑠𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6212, 61biimtrid 242 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)) → ((𝒫 𝑆 ∩ Fin) ⊆ 𝐼 → ¬ 𝑥 ∈ (𝑁𝑡)))
6362impancom 451 . . . . . . 7 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) → ¬ 𝑥 ∈ (𝑁𝑡)))
6463ralrimiv 3151 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡))
6515ssdifssd 4170 . . . . . . . . . 10 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
661, 4, 65acsficl2d 18622 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
6766notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡)))
68 ralnex 3078 . . . . . . . 8 (∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡) ↔ ¬ ∃𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin)𝑥 ∈ (𝑁𝑡))
6967, 68bitr4di 289 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7069ad2antrr 725 . . . . . 6 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑡 ∈ (𝒫 (𝑆 ∖ {𝑥}) ∩ Fin) ¬ 𝑥 ∈ (𝑁𝑡)))
7164, 70mpbird 257 . . . . 5 (((𝜑𝑥𝑆) ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7271an32s 651 . . . 4 (((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
7372ralrimiva 3152 . . 3 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
744, 5, 14, 16, 73ismri2dd 17692 . 2 ((𝜑 ∧ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼) → 𝑆𝐼)
7513, 74impbida 800 1 (𝜑 → (𝑆𝐼 ↔ (𝒫 𝑆 ∩ Fin) ⊆ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cdif 3973  cun 3974  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648  cfv 6573  Fincfn 9003  Moorecmre 17640  mrClscmrc 17641  mrIndcmri 17642  ACScacs 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator