| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difxp2ss | Structured version Visualization version GIF version | ||
| Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| difxp2ss | ⊢ (𝐴 × (𝐵 ∖ 𝐶)) ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difxp2 6166 | . 2 ⊢ (𝐴 × (𝐵 ∖ 𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) | |
| 2 | difss 4116 | . 2 ⊢ ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) ⊆ (𝐴 × 𝐵) | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ (𝐴 × (𝐵 ∖ 𝐶)) ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3928 ⊆ wss 3931 × cxp 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |