Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difxp2ss Structured version   Visualization version   GIF version

Theorem difxp2ss 32507
Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.)
Assertion
Ref Expression
difxp2ss (𝐴 × (𝐵𝐶)) ⊆ (𝐴 × 𝐵)

Proof of Theorem difxp2ss
StepHypRef Expression
1 difxp2 6120 . 2 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))
2 difss 4085 . 2 ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) ⊆ (𝐴 × 𝐵)
31, 2eqsstri 3977 1 (𝐴 × (𝐵𝐶)) ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  cdif 3895  wss 3898   × cxp 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5158  df-xp 5627  df-rel 5628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator