Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > difxp1ss | Structured version Visualization version GIF version |
Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
Ref | Expression |
---|---|
difxp1ss | ⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difxp1 5995 | . 2 ⊢ ((𝐴 ∖ 𝐶) × 𝐵) = ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵)) | |
2 | difss 4038 | . 2 ⊢ ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵)) ⊆ (𝐴 × 𝐵) | |
3 | 1, 2 | eqsstri 3927 | 1 ⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3856 ⊆ wss 3859 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-cnv 5533 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |