![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difxp1ss | Structured version Visualization version GIF version |
Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
Ref | Expression |
---|---|
difxp1ss | ⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difxp1 6198 | . 2 ⊢ ((𝐴 ∖ 𝐶) × 𝐵) = ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵)) | |
2 | difss 4159 | . 2 ⊢ ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵)) ⊆ (𝐴 × 𝐵) | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3973 ⊆ wss 3976 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |