Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difxp1ss Structured version   Visualization version   GIF version

Theorem difxp1ss 32469
Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.)
Assertion
Ref Expression
difxp1ss ((𝐴𝐶) × 𝐵) ⊆ (𝐴 × 𝐵)

Proof of Theorem difxp1ss
StepHypRef Expression
1 difxp1 6165 . 2 ((𝐴𝐶) × 𝐵) = ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵))
2 difss 4116 . 2 ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵)) ⊆ (𝐴 × 𝐵)
31, 2eqsstri 4010 1 ((𝐴𝐶) × 𝐵) ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  cdif 3928  wss 3931   × cxp 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator