Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difxp1ss Structured version   Visualization version   GIF version

Theorem difxp1ss 30771
Description: Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.)
Assertion
Ref Expression
difxp1ss ((𝐴𝐶) × 𝐵) ⊆ (𝐴 × 𝐵)

Proof of Theorem difxp1ss
StepHypRef Expression
1 difxp1 6057 . 2 ((𝐴𝐶) × 𝐵) = ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵))
2 difss 4062 . 2 ((𝐴 × 𝐵) ∖ (𝐶 × 𝐵)) ⊆ (𝐴 × 𝐵)
31, 2eqsstri 3951 1 ((𝐴𝐶) × 𝐵) ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  cdif 3880  wss 3883   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator