MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp2 Structured version   Visualization version   GIF version

Theorem difxp2 6113
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp2 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))

Proof of Theorem difxp2
StepHypRef Expression
1 difxp 6111 . 2 ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) = (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶)))
2 difid 4326 . . . . 5 (𝐴𝐴) = ∅
32xpeq1i 5642 . . . 4 ((𝐴𝐴) × 𝐵) = (∅ × 𝐵)
4 0xp 5715 . . . 4 (∅ × 𝐵) = ∅
53, 4eqtri 2754 . . 3 ((𝐴𝐴) × 𝐵) = ∅
65uneq1i 4114 . 2 (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶))) = (∅ ∪ (𝐴 × (𝐵𝐶)))
7 uncom 4108 . . 3 (∅ ∪ (𝐴 × (𝐵𝐶))) = ((𝐴 × (𝐵𝐶)) ∪ ∅)
8 un0 4344 . . 3 ((𝐴 × (𝐵𝐶)) ∪ ∅) = (𝐴 × (𝐵𝐶))
97, 8eqtri 2754 . 2 (∅ ∪ (𝐴 × (𝐵𝐶))) = (𝐴 × (𝐵𝐶))
101, 6, 93eqtrri 2759 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3899  cun 3900  c0 4283   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154  df-xp 5622  df-rel 5623
This theorem is referenced by:  difxp2ss  32501  imadifxp  32579  sxbrsigalem2  34297
  Copyright terms: Public domain W3C validator