MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp2 Structured version   Visualization version   GIF version

Theorem difxp2 6197
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp2 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))

Proof of Theorem difxp2
StepHypRef Expression
1 difxp 6195 . 2 ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) = (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶)))
2 difid 4398 . . . . 5 (𝐴𝐴) = ∅
32xpeq1i 5726 . . . 4 ((𝐴𝐴) × 𝐵) = (∅ × 𝐵)
4 0xp 5798 . . . 4 (∅ × 𝐵) = ∅
53, 4eqtri 2768 . . 3 ((𝐴𝐴) × 𝐵) = ∅
65uneq1i 4187 . 2 (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶))) = (∅ ∪ (𝐴 × (𝐵𝐶)))
7 uncom 4181 . . 3 (∅ ∪ (𝐴 × (𝐵𝐶))) = ((𝐴 × (𝐵𝐶)) ∪ ∅)
8 un0 4417 . . 3 ((𝐴 × (𝐵𝐶)) ∪ ∅) = (𝐴 × (𝐵𝐶))
97, 8eqtri 2768 . 2 (∅ ∪ (𝐴 × (𝐵𝐶))) = (𝐴 × (𝐵𝐶))
101, 6, 93eqtrri 2773 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cun 3974  c0 4352   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  difxp2ss  32553  imadifxp  32623  sxbrsigalem2  34251
  Copyright terms: Public domain W3C validator