MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp2 Structured version   Visualization version   GIF version

Theorem difxp2 6142
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp2 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))

Proof of Theorem difxp2
StepHypRef Expression
1 difxp 6140 . 2 ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) = (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶)))
2 difid 4342 . . . . 5 (𝐴𝐴) = ∅
32xpeq1i 5667 . . . 4 ((𝐴𝐴) × 𝐵) = (∅ × 𝐵)
4 0xp 5740 . . . 4 (∅ × 𝐵) = ∅
53, 4eqtri 2753 . . 3 ((𝐴𝐴) × 𝐵) = ∅
65uneq1i 4130 . 2 (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶))) = (∅ ∪ (𝐴 × (𝐵𝐶)))
7 uncom 4124 . . 3 (∅ ∪ (𝐴 × (𝐵𝐶))) = ((𝐴 × (𝐵𝐶)) ∪ ∅)
8 un0 4360 . . 3 ((𝐴 × (𝐵𝐶)) ∪ ∅) = (𝐴 × (𝐵𝐶))
97, 8eqtri 2753 . 2 (∅ ∪ (𝐴 × (𝐵𝐶))) = (𝐴 × (𝐵𝐶))
101, 6, 93eqtrri 2758 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3914  cun 3915  c0 4299   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  difxp2ss  32459  imadifxp  32537  sxbrsigalem2  34284
  Copyright terms: Public domain W3C validator