MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disji Structured version   Visualization version   GIF version

Theorem disji 4873
Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1 (𝑥 = 𝑋𝐵 = 𝐶)
disji.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
disji ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐶𝑍𝐷)) → 𝑋 = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐵(𝑥)   𝑍(𝑥)

Proof of Theorem disji
StepHypRef Expression
1 inelcm 4257 . 2 ((𝑍𝐶𝑍𝐷) → (𝐶𝐷) ≠ ∅)
2 disji.1 . . . . . 6 (𝑥 = 𝑋𝐵 = 𝐶)
3 disji.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐷)
42, 3disji2 4872 . . . . 5 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
543expia 1111 . . . 4 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑌 → (𝐶𝐷) = ∅))
65necon1d 2991 . . 3 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐶𝐷) ≠ ∅ → 𝑋 = 𝑌))
763impia 1106 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ (𝐶𝐷) ≠ ∅) → 𝑋 = 𝑌)
81, 7syl3an3 1166 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐶𝑍𝐷)) → 𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  cin 3791  c0 4141  Disj wdisj 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-in 3799  df-nul 4142  df-disj 4857
This theorem is referenced by:  volfiniun  23762  fnpreimac  30053
  Copyright terms: Public domain W3C validator