| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disji | Structured version Visualization version GIF version | ||
| Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disji.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| disji.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| disji | ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inelcm 4412 | . 2 ⊢ ((𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷) → (𝐶 ∩ 𝐷) ≠ ∅) | |
| 2 | disji.1 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 3 | disji.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | disji2 5073 | . . . . 5 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| 5 | 4 | 3expia 1121 | . . . 4 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅)) |
| 6 | 5 | necon1d 2950 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐶 ∩ 𝐷) ≠ ∅ → 𝑋 = 𝑌)) |
| 7 | 6 | 3impia 1117 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐶 ∩ 𝐷) ≠ ∅) → 𝑋 = 𝑌) |
| 8 | 1, 7 | syl3an3 1165 | 1 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ∅c0 4280 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rmo 3346 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-in 3904 df-nul 4281 df-disj 5057 |
| This theorem is referenced by: volfiniun 25475 fnpreimac 32653 |
| Copyright terms: Public domain | W3C validator |