Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disji | Structured version Visualization version GIF version |
Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disji.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
disji.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
disji | ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 4395 | . 2 ⊢ ((𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷) → (𝐶 ∩ 𝐷) ≠ ∅) | |
2 | disji.1 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
3 | disji.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
4 | 2, 3 | disji2 5052 | . . . . 5 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
5 | 4 | 3expia 1119 | . . . 4 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅)) |
6 | 5 | necon1d 2964 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐶 ∩ 𝐷) ≠ ∅ → 𝑋 = 𝑌)) |
7 | 6 | 3impia 1115 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐶 ∩ 𝐷) ≠ ∅) → 𝑋 = 𝑌) |
8 | 1, 7 | syl3an3 1163 | 1 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-in 3890 df-nul 4254 df-disj 5036 |
This theorem is referenced by: volfiniun 24616 fnpreimac 30910 |
Copyright terms: Public domain | W3C validator |