MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disji Structured version   Visualization version   GIF version

Theorem disji 5053
Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1 (𝑥 = 𝑋𝐵 = 𝐶)
disji.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
disji ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐶𝑍𝐷)) → 𝑋 = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐵(𝑥)   𝑍(𝑥)

Proof of Theorem disji
StepHypRef Expression
1 inelcm 4395 . 2 ((𝑍𝐶𝑍𝐷) → (𝐶𝐷) ≠ ∅)
2 disji.1 . . . . . 6 (𝑥 = 𝑋𝐵 = 𝐶)
3 disji.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐷)
42, 3disji2 5052 . . . . 5 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
543expia 1119 . . . 4 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑌 → (𝐶𝐷) = ∅))
65necon1d 2964 . . 3 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐶𝐷) ≠ ∅ → 𝑋 = 𝑌))
763impia 1115 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ (𝐶𝐷) ≠ ∅) → 𝑋 = 𝑌)
81, 7syl3an3 1163 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐶𝑍𝐷)) → 𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  c0 4253  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-in 3890  df-nul 4254  df-disj 5036
This theorem is referenced by:  volfiniun  24616  fnpreimac  30910
  Copyright terms: Public domain W3C validator