Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnpreimac Structured version   Visualization version   GIF version

Theorem fnpreimac 32682
Description: Choose a set 𝑥 containing a preimage of each element of a given set 𝐵. (Contributed by Thierry Arnoux, 7-May-2023.)
Assertion
Ref Expression
fnpreimac ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fnpreimac
Dummy variables 𝑓 𝑡 𝑢 𝑣 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . . . 9 (𝑦𝐵 ↦ (𝐹 “ {𝑦})) = (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
21elrnmpt 5968 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦})))
32elv 3484 . . . . . . 7 (𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦}))
4 simpr 484 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → 𝑧 = (𝐹 “ {𝑦}))
5 simpl3 1193 . . . . . . . . . . . 12 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝐵 ⊆ ran 𝐹)
6 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝑦𝐵)
75, 6sseldd 3983 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝑦 ∈ ran 𝐹)
8 inisegn0 6115 . . . . . . . . . . 11 (𝑦 ∈ ran 𝐹 ↔ (𝐹 “ {𝑦}) ≠ ∅)
97, 8sylib 218 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ≠ ∅)
109adantr 480 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → (𝐹 “ {𝑦}) ≠ ∅)
114, 10eqnetrd 3007 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → 𝑧 ≠ ∅)
1211r19.29an 3157 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦})) → 𝑧 ≠ ∅)
133, 12sylan2b 594 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → 𝑧 ≠ ∅)
1413ralrimiva 3145 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ≠ ∅)
15 simp2 1137 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 Fn 𝐴)
16 simp1 1136 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐴𝑉)
1715, 16jca 511 . . . . . . . 8 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝐹 Fn 𝐴𝐴𝑉))
18 fnex 7238 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
19 rnexg 7925 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
2017, 18, 193syl 18 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ran 𝐹 ∈ V)
21 simp3 1138 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐵 ⊆ ran 𝐹)
2220, 21ssexd 5323 . . . . . 6 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐵 ∈ V)
23 mptexg 7242 . . . . . 6 (𝐵 ∈ V → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
24 rnexg 7925 . . . . . 6 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
25 fvi 6984 . . . . . 6 (ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
2622, 23, 24, 254syl 19 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
2714, 26raleqtrrdv 3329 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅)
28 fvex 6918 . . . . 5 ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∈ V
2928ac5b 10519 . . . 4 (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅ → ∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧))
3027, 29syl 17 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧))
3126unieqd 4919 . . . . . 6 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
3226, 31feq23d 6730 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ↔ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
3326raleqdv 3325 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧))
3432, 33anbi12d 632 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ((𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧) ↔ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)))
3534exbidv 1920 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)))
3630, 35mpbid 232 . 2 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧))
37 vex 3483 . . . . . . . . 9 𝑓 ∈ V
3837rnex 7933 . . . . . . . 8 ran 𝑓 ∈ V
3938a1i 11 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ∈ V)
40 simplr 768 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
41 frn 6742 . . . . . . . . 9 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
4240, 41syl 17 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
43 nfv 1913 . . . . . . . . . . . . 13 𝑦(𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹)
44 nfcv 2904 . . . . . . . . . . . . . 14 𝑦𝑓
45 nfmpt1 5249 . . . . . . . . . . . . . . 15 𝑦(𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4645nfrn 5962 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4746nfuni 4913 . . . . . . . . . . . . . 14 𝑦 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4844, 46, 47nff 6731 . . . . . . . . . . . . 13 𝑦 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4943, 48nfan 1898 . . . . . . . . . . . 12 𝑦((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
50 nfv 1913 . . . . . . . . . . . . 13 𝑦(𝑓𝑧) ∈ 𝑧
5146, 50nfralw 3310 . . . . . . . . . . . 12 𝑦𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧
5249, 51nfan 1898 . . . . . . . . . . 11 𝑦(((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
5317, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V)
5453ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → 𝐹 ∈ V)
55 cnvexg 7947 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
56 imaexg 7936 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ {𝑦}) ∈ V)
5754, 55, 563syl 18 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ V)
58 cnvimass 6099 . . . . . . . . . . . . . . 15 (𝐹 “ {𝑦}) ⊆ dom 𝐹
5958a1i 11 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ⊆ dom 𝐹)
6015fndmd 6672 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → dom 𝐹 = 𝐴)
6160ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → dom 𝐹 = 𝐴)
6259, 61sseqtrd 4019 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ⊆ 𝐴)
6357, 62elpwd 4605 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ 𝒫 𝐴)
6463ex 412 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → (𝐹 “ {𝑦}) ∈ 𝒫 𝐴))
6552, 64ralrimi 3256 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ 𝒫 𝐴)
661rnmptss 7142 . . . . . . . . . 10 (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ 𝒫 𝐴 → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴)
6765, 66syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴)
68 sspwuni 5099 . . . . . . . . 9 (ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝐴)
6967, 68sylib 218 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝐴)
7042, 69sstrd 3993 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓𝐴)
7139, 70elpwd 4605 . . . . . 6 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ∈ 𝒫 𝐴)
72 fnfun 6667 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝐴 → Fun 𝐹)
7315, 72syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → Fun 𝐹)
7473ad5antr 734 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Fun 𝐹)
75 sndisj 5134 . . . . . . . . . . . . . . . . . . 19 Disj 𝑦𝐵 {𝑦}
76 disjpreima 32598 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹Disj 𝑦𝐵 {𝑦}) → Disj 𝑦𝐵 (𝐹 “ {𝑦}))
7774, 75, 76sylancl 586 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Disj 𝑦𝐵 (𝐹 “ {𝑦}))
78 disjrnmpt 32599 . . . . . . . . . . . . . . . . . 18 (Disj 𝑦𝐵 (𝐹 “ {𝑦}) → Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧)
7977, 78syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧)
80 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
81 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
82 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
83 fveq2 6905 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑢 → (𝑓𝑧) = (𝑓𝑢))
84 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑢𝑧 = 𝑢)
8583, 84eleq12d 2834 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
8685rspcv 3617 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓𝑢) ∈ 𝑢))
8786imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓𝑢) ∈ 𝑢)
8880, 82, 87syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) ∈ 𝑢)
89 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) = (𝑓𝑣))
90 fveq2 6905 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑣 → (𝑓𝑧) = (𝑓𝑣))
91 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑣𝑧 = 𝑣)
9290, 91eleq12d 2834 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑣 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑣) ∈ 𝑣))
9392rspcv 3617 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓𝑣) ∈ 𝑣))
9493imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓𝑣) ∈ 𝑣)
9581, 82, 94syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑣) ∈ 𝑣)
9689, 95eqeltrd 2840 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) ∈ 𝑣)
9784, 91disji 5127 . . . . . . . . . . . . . . . . 17 ((Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ∧ (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ((𝑓𝑢) ∈ 𝑢 ∧ (𝑓𝑢) ∈ 𝑣)) → 𝑢 = 𝑣)
9879, 80, 81, 88, 96, 97syl122anc 1380 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑢 = 𝑣)
9998ex 412 . . . . . . . . . . . . . . 15 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → ((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
10099anasss 466 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))) → ((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
101100ralrimivva 3201 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
10240, 101jca 511 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣)))
103 dff13 7276 . . . . . . . . . . . 12 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣)))
104102, 103sylibr 234 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
105 f1f1orn 6858 . . . . . . . . . . 11 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓)
106104, 105syl 17 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓)
107 f1oen3g 9008 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ ran 𝑓)
10837, 106, 107sylancr 587 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ ran 𝑓)
109108ensymd 9046 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
11022, 23syl 17 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
111110ad2antrr 726 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
11257ex 412 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → (𝐹 “ {𝑦}) ∈ V))
11352, 112ralrimi 3256 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V)
11473ad5antr 734 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → Fun 𝐹)
115 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦𝑡)
11621ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝐵 ⊆ ran 𝐹)
117 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦𝐵)
118116, 117sseldd 3983 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦 ∈ ran 𝐹)
119 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑡𝐵)
120116, 119sseldd 3983 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑡 ∈ ran 𝐹)
121114, 115, 118, 120preimane 32681 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → (𝐹 “ {𝑦}) ≠ (𝐹 “ {𝑡}))
122121ex 412 . . . . . . . . . . . . . . . . 17 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) → (𝑦𝑡 → (𝐹 “ {𝑦}) ≠ (𝐹 “ {𝑡})))
123122necon4d 2963 . . . . . . . . . . . . . . . 16 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) → ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
124123ralrimiva 3145 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → ∀𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
125124ex 412 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → ∀𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
12652, 125ralrimi 3256 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
127113, 126jca 511 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
128 sneq 4635 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → {𝑦} = {𝑡})
129128imaeq2d 6077 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑡}))
1301, 129f1mpt 7282 . . . . . . . . . . . 12 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V ↔ (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
131127, 130sylibr 234 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V)
132 f1f1orn 6858 . . . . . . . . . . 11 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
133131, 132syl 17 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
134 f1oen3g 9008 . . . . . . . . . 10 (((𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V ∧ (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → 𝐵 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
135111, 133, 134syl2anc 584 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝐵 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
136135ensymd 9046 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ 𝐵)
137 entr 9047 . . . . . . . 8 ((ran 𝑓 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ 𝐵) → ran 𝑓𝐵)
138109, 136, 137syl2anc 584 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓𝐵)
139 imass2 6119 . . . . . . . . . . 11 (ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
14041, 139syl 17 . . . . . . . . . 10 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
14140, 140syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
142 imauni 7267 . . . . . . . . . 10 (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧)
143 imaeq2 6073 . . . . . . . . . . . . 13 (𝑧 = (𝐹 “ {𝑦}) → (𝐹𝑧) = (𝐹 “ (𝐹 “ {𝑦})))
14453adantr 480 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝐹 ∈ V)
145144, 55, 563syl 18 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ V)
146143, 145iunrnmptss 32579 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})))
147 funimacnv 6646 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
14873, 147syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
149148adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
1506snssd 4808 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → {𝑦} ⊆ 𝐵)
151150, 5sstrd 3993 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → {𝑦} ⊆ ran 𝐹)
152 dfss2 3968 . . . . . . . . . . . . . . . 16 ({𝑦} ⊆ ran 𝐹 ↔ ({𝑦} ∩ ran 𝐹) = {𝑦})
153151, 152sylib 218 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → ({𝑦} ∩ ran 𝐹) = {𝑦})
154149, 153eqtrd 2776 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ (𝐹 “ {𝑦})) = {𝑦})
155154iuneq2dv 5015 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})) = 𝑦𝐵 {𝑦})
156 iunid 5059 . . . . . . . . . . . . 13 𝑦𝐵 {𝑦} = 𝐵
157155, 156eqtrdi 2792 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})) = 𝐵)
158146, 157sseqtrd 4019 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝐵)
159158ad2antrr 726 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝐵)
160142, 159eqsstrid 4021 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ⊆ 𝐵)
161141, 160sstrd 3993 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ 𝐵)
16240adantr 480 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
163162ffund 6739 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → Fun 𝑓)
164 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑡𝐵)
16553, 55syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V)
166165ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝐹 ∈ V)
167 imaexg 7936 . . . . . . . . . . . . . . . 16 (𝐹 ∈ V → (𝐹 “ {𝑡}) ∈ V)
168166, 167syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ V)
1691, 129elrnmpt1s 5969 . . . . . . . . . . . . . . 15 ((𝑡𝐵 ∧ (𝐹 “ {𝑡}) ∈ V) → (𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
170164, 168, 169syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
171162fdmd 6745 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → dom 𝑓 = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
172170, 171eleqtrrd 2843 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ dom 𝑓)
173 fvelrn 7095 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐹 “ {𝑡}) ∈ dom 𝑓) → (𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓)
174163, 172, 173syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓)
17515ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝐹 Fn 𝐴)
176 simplr 768 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
177 fveq2 6905 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹 “ {𝑡}) → (𝑓𝑧) = (𝑓‘(𝐹 “ {𝑡})))
178 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹 “ {𝑡}) → 𝑧 = (𝐹 “ {𝑡}))
179177, 178eleq12d 2834 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹 “ {𝑡}) → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})))
180179rspcv 3617 . . . . . . . . . . . . . . 15 ((𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})))
181180imp 406 . . . . . . . . . . . . . 14 (((𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}))
182170, 176, 181syl2anc 584 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}))
183 fniniseg 7079 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → ((𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}) ↔ ((𝑓‘(𝐹 “ {𝑡})) ∈ 𝐴 ∧ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)))
184183simplbda 499 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})) → (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)
185175, 182, 184syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)
186 fveqeq2 6914 . . . . . . . . . . . . 13 (𝑘 = (𝑓‘(𝐹 “ {𝑡})) → ((𝐹𝑘) = 𝑡 ↔ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡))
187186rspcev 3621 . . . . . . . . . . . 12 (((𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓 ∧ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡) → ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡)
188174, 185, 187syl2anc 584 . . . . . . . . . . 11 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡)
18970adantr 480 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ran 𝑓𝐴)
190175, 189fvelimabd 6981 . . . . . . . . . . 11 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑡 ∈ (𝐹 “ ran 𝑓) ↔ ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡))
191188, 190mpbird 257 . . . . . . . . . 10 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑡 ∈ (𝐹 “ ran 𝑓))
192191ex 412 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑡𝐵𝑡 ∈ (𝐹 “ ran 𝑓)))
193192ssrdv 3988 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝐵 ⊆ (𝐹 “ ran 𝑓))
194161, 193eqssd 4000 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) = 𝐵)
195138, 194jca 511 . . . . . 6 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵))
196 breq1 5145 . . . . . . . 8 (𝑥 = ran 𝑓 → (𝑥𝐵 ↔ ran 𝑓𝐵))
197 imaeq2 6073 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝐹𝑥) = (𝐹 “ ran 𝑓))
198197eqeq1d 2738 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝐹𝑥) = 𝐵 ↔ (𝐹 “ ran 𝑓) = 𝐵))
199196, 198anbi12d 632 . . . . . . 7 (𝑥 = ran 𝑓 → ((𝑥𝐵 ∧ (𝐹𝑥) = 𝐵) ↔ (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)))
200199rspcev 3621 . . . . . 6 ((ran 𝑓 ∈ 𝒫 𝐴 ∧ (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
20171, 195, 200syl2anc 584 . . . . 5 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
202201anasss 466 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
203202ex 412 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ((𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵)))
204203exlimdv 1932 . 2 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵)))
20536, 204mpd 15 1 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  Vcvv 3479  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906   ciun 4990  Disj wdisj 5109   class class class wbr 5142  cmpt 5224   I cid 5576  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687  Fun wfun 6554   Fn wfn 6555  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  cen 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-ac2 10504
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-er 8746  df-en 8987  df-card 9980  df-ac 10157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator