Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) = (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) |
2 | 1 | elrnmpt 5981 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (◡𝐹 “ {𝑦}))) |
3 | 2 | elv 3493 |
. . . . . . 7
⊢ (𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (◡𝐹 “ {𝑦})) |
4 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = (◡𝐹 “ {𝑦})) → 𝑧 = (◡𝐹 “ {𝑦})) |
5 | | simpl3 1193 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ ran 𝐹) |
6 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
7 | 5, 6 | sseldd 4009 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ran 𝐹) |
8 | | inisegn0 6128 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑦}) ≠ ∅) |
9 | 7, 8 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → (◡𝐹 “ {𝑦}) ≠ ∅) |
10 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = (◡𝐹 “ {𝑦})) → (◡𝐹 “ {𝑦}) ≠ ∅) |
11 | 4, 10 | eqnetrd 3014 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = (◡𝐹 “ {𝑦})) → 𝑧 ≠ ∅) |
12 | 11 | r19.29an 3164 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ ∃𝑦 ∈ 𝐵 𝑧 = (◡𝐹 “ {𝑦})) → 𝑧 ≠ ∅) |
13 | 3, 12 | sylan2b 593 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) → 𝑧 ≠ ∅) |
14 | 13 | ralrimiva 3152 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))𝑧 ≠ ∅) |
15 | | simp2 1137 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → 𝐹 Fn 𝐴) |
16 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → 𝐴 ∈ 𝑉) |
17 | 15, 16 | jca 511 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉)) |
18 | | fnex 7254 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
19 | | rnexg 7942 |
. . . . . . . 8
⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ran 𝐹 ∈ V) |
21 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → 𝐵 ⊆ ran 𝐹) |
22 | 20, 21 | ssexd 5342 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → 𝐵 ∈ V) |
23 | | mptexg 7258 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V) |
24 | | rnexg 7942 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V → ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V) |
25 | | fvi 6998 |
. . . . . 6
⊢ (ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V → ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) = ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
26 | 22, 23, 24, 25 | 4syl 19 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) = ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
27 | 14, 26 | raleqtrrdv 3338 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))𝑧 ≠ ∅) |
28 | | fvex 6933 |
. . . . 5
⊢ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∈ V |
29 | 28 | ac5b 10547 |
. . . 4
⊢
(∀𝑧 ∈ (
I ‘ran (𝑦 ∈
𝐵 ↦ (◡𝐹 “ {𝑦})))𝑧 ≠ ∅ → ∃𝑓(𝑓:( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))⟶∪ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))(𝑓‘𝑧) ∈ 𝑧)) |
30 | 27, 29 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))⟶∪ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))(𝑓‘𝑧) ∈ 𝑧)) |
31 | 26 | unieqd 4944 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∪ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) = ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
32 | 26, 31 | feq23d 6742 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (𝑓:( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))⟶∪ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ↔ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))) |
33 | 26 | raleqdv 3334 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (∀𝑧 ∈ ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))(𝑓‘𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧)) |
34 | 32, 33 | anbi12d 631 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ((𝑓:( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))⟶∪ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))(𝑓‘𝑧) ∈ 𝑧) ↔ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧))) |
35 | 34 | exbidv 1920 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))⟶∪ ( I
‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))(𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧))) |
36 | 30, 35 | mpbid 232 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧)) |
37 | | vex 3492 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
38 | 37 | rnex 7950 |
. . . . . . . 8
⊢ ran 𝑓 ∈ V |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran 𝑓 ∈ V) |
40 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
41 | | frn 6754 |
. . . . . . . . 9
⊢ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → ran 𝑓 ⊆ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran 𝑓 ⊆ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
43 | | nfv 1913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) |
44 | | nfcv 2908 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝑓 |
45 | | nfmpt1 5274 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) |
46 | 45 | nfrn 5977 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) |
47 | 46 | nfuni 4938 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦∪ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) |
48 | 44, 46, 47 | nff 6743 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) |
49 | 43, 48 | nfan 1898 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
50 | | nfv 1913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝑓‘𝑧) ∈ 𝑧 |
51 | 46, 50 | nfralw 3317 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧 |
52 | 49, 51 | nfan 1898 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) |
53 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V) |
54 | 53 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → 𝐹 ∈ V) |
55 | | cnvexg 7964 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
56 | | imaexg 7953 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 ∈ V → (◡𝐹 “ {𝑦}) ∈ V) |
57 | 54, 55, 56 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → (◡𝐹 “ {𝑦}) ∈ V) |
58 | | cnvimass 6111 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ {𝑦}) ⊆ dom 𝐹 |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → (◡𝐹 “ {𝑦}) ⊆ dom 𝐹) |
60 | 15 | fndmd 6684 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → dom 𝐹 = 𝐴) |
61 | 60 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → dom 𝐹 = 𝐴) |
62 | 59, 61 | sseqtrd 4049 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → (◡𝐹 “ {𝑦}) ⊆ 𝐴) |
63 | 57, 62 | elpwd 4628 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → (◡𝐹 “ {𝑦}) ∈ 𝒫 𝐴) |
64 | 63 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑦 ∈ 𝐵 → (◡𝐹 “ {𝑦}) ∈ 𝒫 𝐴)) |
65 | 52, 64 | ralrimi 3263 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∀𝑦 ∈ 𝐵 (◡𝐹 “ {𝑦}) ∈ 𝒫 𝐴) |
66 | 1 | rnmptss 7157 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 (◡𝐹 “ {𝑦}) ∈ 𝒫 𝐴 → ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ⊆ 𝒫 𝐴) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ⊆ 𝒫 𝐴) |
68 | | sspwuni 5123 |
. . . . . . . . 9
⊢ (ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ⊆ 𝒫 𝐴 ↔ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ⊆ 𝐴) |
69 | 67, 68 | sylib 218 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ⊆ 𝐴) |
70 | 42, 69 | sstrd 4019 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran 𝑓 ⊆ 𝐴) |
71 | 39, 70 | elpwd 4628 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran 𝑓 ∈ 𝒫 𝐴) |
72 | | fnfun 6679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
73 | 15, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → Fun 𝐹) |
74 | 73 | ad5antr 733 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → Fun 𝐹) |
75 | | sndisj 5158 |
. . . . . . . . . . . . . . . . . . 19
⊢
Disj 𝑦 ∈
𝐵 {𝑦} |
76 | | disjpreima 32606 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ Disj 𝑦 ∈ 𝐵 {𝑦}) → Disj 𝑦 ∈ 𝐵 (◡𝐹 “ {𝑦})) |
77 | 74, 75, 76 | sylancl 585 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → Disj 𝑦 ∈ 𝐵 (◡𝐹 “ {𝑦})) |
78 | | disjrnmpt 32607 |
. . . . . . . . . . . . . . . . . 18
⊢
(Disj 𝑦
∈ 𝐵 (◡𝐹 “ {𝑦}) → Disj 𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))𝑧) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → Disj 𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))𝑧) |
80 | | simpllr 775 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
81 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
82 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) |
83 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑢 → (𝑓‘𝑧) = (𝑓‘𝑢)) |
84 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑢 → 𝑧 = 𝑢) |
85 | 83, 84 | eleq12d 2838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘𝑢) ∈ 𝑢)) |
86 | 85 | rspcv 3631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧 → (𝑓‘𝑢) ∈ 𝑢)) |
87 | 86 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑓‘𝑢) ∈ 𝑢) |
88 | 80, 82, 87 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → (𝑓‘𝑢) ∈ 𝑢) |
89 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → (𝑓‘𝑢) = (𝑓‘𝑣)) |
90 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑣 → (𝑓‘𝑧) = (𝑓‘𝑣)) |
91 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑣 → 𝑧 = 𝑣) |
92 | 90, 91 | eleq12d 2838 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑣 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘𝑣) ∈ 𝑣)) |
93 | 92 | rspcv 3631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧 → (𝑓‘𝑣) ∈ 𝑣)) |
94 | 93 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑓‘𝑣) ∈ 𝑣) |
95 | 81, 82, 94 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → (𝑓‘𝑣) ∈ 𝑣) |
96 | 89, 95 | eqeltrd 2844 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → (𝑓‘𝑢) ∈ 𝑣) |
97 | 84, 91 | disji 5151 |
. . . . . . . . . . . . . . . . 17
⊢
((Disj 𝑧
∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))𝑧 ∧ (𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ((𝑓‘𝑢) ∈ 𝑢 ∧ (𝑓‘𝑢) ∈ 𝑣)) → 𝑢 = 𝑣) |
98 | 79, 80, 81, 88, 96, 97 | syl122anc 1379 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ (𝑓‘𝑢) = (𝑓‘𝑣)) → 𝑢 = 𝑣) |
99 | 98 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) → ((𝑓‘𝑢) = (𝑓‘𝑣) → 𝑢 = 𝑣)) |
100 | 99 | anasss 466 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ (𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))) → ((𝑓‘𝑢) = (𝑓‘𝑣) → 𝑢 = 𝑣)) |
101 | 100 | ralrimivva 3208 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∀𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))((𝑓‘𝑢) = (𝑓‘𝑣) → 𝑢 = 𝑣)) |
102 | 40, 101 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))((𝑓‘𝑢) = (𝑓‘𝑣) → 𝑢 = 𝑣))) |
103 | | dff13 7292 |
. . . . . . . . . . . 12
⊢ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))–1-1→∪ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ↔ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))((𝑓‘𝑢) = (𝑓‘𝑣) → 𝑢 = 𝑣))) |
104 | 102, 103 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))–1-1→∪ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
105 | | f1f1orn 6873 |
. . . . . . . . . . 11
⊢ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))–1-1→∪ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))–1-1-onto→ran
𝑓) |
106 | 104, 105 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))–1-1-onto→ran
𝑓) |
107 | | f1oen3g 9026 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))–1-1-onto→ran
𝑓) → ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ≈ ran 𝑓) |
108 | 37, 106, 107 | sylancr 586 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ≈ ran 𝑓) |
109 | 108 | ensymd 9065 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran 𝑓 ≈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
110 | 22, 23 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V) |
111 | 110 | ad2antrr 725 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V) |
112 | 57 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑦 ∈ 𝐵 → (◡𝐹 “ {𝑦}) ∈ V)) |
113 | 52, 112 | ralrimi 3263 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∀𝑦 ∈ 𝐵 (◡𝐹 “ {𝑦}) ∈ V) |
114 | 73 | ad5antr 733 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → Fun 𝐹) |
115 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → 𝑦 ≠ 𝑡) |
116 | 21 | ad5antr 733 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → 𝐵 ⊆ ran 𝐹) |
117 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → 𝑦 ∈ 𝐵) |
118 | 116, 117 | sseldd 4009 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → 𝑦 ∈ ran 𝐹) |
119 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → 𝑡 ∈ 𝐵) |
120 | 116, 119 | sseldd 4009 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → 𝑡 ∈ ran 𝐹) |
121 | 114, 115,
118, 120 | preimane 32688 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ∈
𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑦 ≠ 𝑡) → (◡𝐹 “ {𝑦}) ≠ (◡𝐹 “ {𝑡})) |
122 | 121 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (𝑦 ≠ 𝑡 → (◡𝐹 “ {𝑦}) ≠ (◡𝐹 “ {𝑡}))) |
123 | 122 | necon4d 2970 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ((◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡}) → 𝑦 = 𝑡)) |
124 | 123 | ralrimiva 3152 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑦 ∈ 𝐵) → ∀𝑡 ∈ 𝐵 ((◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡}) → 𝑦 = 𝑡)) |
125 | 124 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑦 ∈ 𝐵 → ∀𝑡 ∈ 𝐵 ((◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡}) → 𝑦 = 𝑡))) |
126 | 52, 125 | ralrimi 3263 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∀𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐵 ((◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡}) → 𝑦 = 𝑡)) |
127 | 113, 126 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (∀𝑦 ∈ 𝐵 (◡𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐵 ((◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡}) → 𝑦 = 𝑡))) |
128 | | sneq 4658 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → {𝑦} = {𝑡}) |
129 | 128 | imaeq2d 6089 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡})) |
130 | 1, 129 | f1mpt 7298 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})):𝐵–1-1→V ↔ (∀𝑦 ∈ 𝐵 (◡𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐵 ((◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑡}) → 𝑦 = 𝑡))) |
131 | 127, 130 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})):𝐵–1-1→V) |
132 | | f1f1orn 6873 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})):𝐵–1-1→V → (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})):𝐵–1-1-onto→ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
133 | 131, 132 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})):𝐵–1-1-onto→ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
134 | | f1oen3g 9026 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∈ V ∧ (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})):𝐵–1-1-onto→ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) → 𝐵 ≈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
135 | 111, 133,
134 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → 𝐵 ≈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
136 | 135 | ensymd 9065 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ≈ 𝐵) |
137 | | entr 9066 |
. . . . . . . 8
⊢ ((ran
𝑓 ≈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ≈ 𝐵) → ran 𝑓 ≈ 𝐵) |
138 | 109, 136,
137 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ran 𝑓 ≈ 𝐵) |
139 | | imass2 6132 |
. . . . . . . . . . 11
⊢ (ran
𝑓 ⊆ ∪ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 “ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))) |
140 | 41, 139 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 “ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))) |
141 | 40, 140 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ (𝐹 “ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})))) |
142 | | imauni 7283 |
. . . . . . . . . 10
⊢ (𝐹 “ ∪ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) = ∪
𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝐹 “ 𝑧) |
143 | | imaeq2 6085 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (◡𝐹 “ {𝑦}) → (𝐹 “ 𝑧) = (𝐹 “ (◡𝐹 “ {𝑦}))) |
144 | 53 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → 𝐹 ∈ V) |
145 | 144, 55, 56 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → (◡𝐹 “ {𝑦}) ∈ V) |
146 | 143, 145 | iunrnmptss 32588 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∪
𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝐹 “ 𝑧) ⊆ ∪
𝑦 ∈ 𝐵 (𝐹 “ (◡𝐹 “ {𝑦}))) |
147 | | funimacnv 6659 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝐹 → (𝐹 “ (◡𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹)) |
148 | 73, 147 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹)) |
149 | 148 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹 “ (◡𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹)) |
150 | 6 | snssd 4834 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → {𝑦} ⊆ 𝐵) |
151 | 150, 5 | sstrd 4019 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → {𝑦} ⊆ ran 𝐹) |
152 | | dfss2 3994 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑦} ⊆ ran 𝐹 ↔ ({𝑦} ∩ ran 𝐹) = {𝑦}) |
153 | 151, 152 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → ({𝑦} ∩ ran 𝐹) = {𝑦}) |
154 | 149, 153 | eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹 “ (◡𝐹 “ {𝑦})) = {𝑦}) |
155 | 154 | iuneq2dv 5039 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∪
𝑦 ∈ 𝐵 (𝐹 “ (◡𝐹 “ {𝑦})) = ∪
𝑦 ∈ 𝐵 {𝑦}) |
156 | | iunid 5083 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑦 ∈ 𝐵 {𝑦} = 𝐵 |
157 | 155, 156 | eqtrdi 2796 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∪
𝑦 ∈ 𝐵 (𝐹 “ (◡𝐹 “ {𝑦})) = 𝐵) |
158 | 146, 157 | sseqtrd 4049 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∪
𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝐹 “ 𝑧) ⊆ 𝐵) |
159 | 158 | ad2antrr 725 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∪
𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝐹 “ 𝑧) ⊆ 𝐵) |
160 | 142, 159 | eqsstrid 4057 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝐹 “ ∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ⊆ 𝐵) |
161 | 141, 160 | sstrd 4019 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ 𝐵) |
162 | 40 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
163 | 162 | ffund 6751 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → Fun 𝑓) |
164 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝐵) |
165 | 53, 55 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ◡𝐹 ∈ V) |
166 | 165 | ad3antrrr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → ◡𝐹 ∈ V) |
167 | | imaexg 7953 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐹 ∈ V → (◡𝐹 “ {𝑡}) ∈ V) |
168 | 166, 167 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (◡𝐹 “ {𝑡}) ∈ V) |
169 | 1, 129 | elrnmpt1s 5982 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ 𝐵 ∧ (◡𝐹 “ {𝑡}) ∈ V) → (◡𝐹 “ {𝑡}) ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
170 | 164, 168,
169 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (◡𝐹 “ {𝑡}) ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
171 | 162 | fdmd 6757 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → dom 𝑓 = ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) |
172 | 170, 171 | eleqtrrd 2847 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (◡𝐹 “ {𝑡}) ∈ dom 𝑓) |
173 | | fvelrn 7110 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑓 ∧ (◡𝐹 “ {𝑡}) ∈ dom 𝑓) → (𝑓‘(◡𝐹 “ {𝑡})) ∈ ran 𝑓) |
174 | 163, 172,
173 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (𝑓‘(◡𝐹 “ {𝑡})) ∈ ran 𝑓) |
175 | 15 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → 𝐹 Fn 𝐴) |
176 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) |
177 | | fveq2 6920 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (◡𝐹 “ {𝑡}) → (𝑓‘𝑧) = (𝑓‘(◡𝐹 “ {𝑡}))) |
178 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (◡𝐹 “ {𝑡}) → 𝑧 = (◡𝐹 “ {𝑡})) |
179 | 177, 178 | eleq12d 2838 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (◡𝐹 “ {𝑡}) → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘(◡𝐹 “ {𝑡})) ∈ (◡𝐹 “ {𝑡}))) |
180 | 179 | rspcv 3631 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐹 “ {𝑡}) ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧 → (𝑓‘(◡𝐹 “ {𝑡})) ∈ (◡𝐹 “ {𝑡}))) |
181 | 180 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((◡𝐹 “ {𝑡}) ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑓‘(◡𝐹 “ {𝑡})) ∈ (◡𝐹 “ {𝑡})) |
182 | 170, 176,
181 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (𝑓‘(◡𝐹 “ {𝑡})) ∈ (◡𝐹 “ {𝑡})) |
183 | | fniniseg 7093 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐴 → ((𝑓‘(◡𝐹 “ {𝑡})) ∈ (◡𝐹 “ {𝑡}) ↔ ((𝑓‘(◡𝐹 “ {𝑡})) ∈ 𝐴 ∧ (𝐹‘(𝑓‘(◡𝐹 “ {𝑡}))) = 𝑡))) |
184 | 183 | simplbda 499 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝐴 ∧ (𝑓‘(◡𝐹 “ {𝑡})) ∈ (◡𝐹 “ {𝑡})) → (𝐹‘(𝑓‘(◡𝐹 “ {𝑡}))) = 𝑡) |
185 | 175, 182,
184 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (𝐹‘(𝑓‘(◡𝐹 “ {𝑡}))) = 𝑡) |
186 | | fveqeq2 6929 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘(◡𝐹 “ {𝑡})) → ((𝐹‘𝑘) = 𝑡 ↔ (𝐹‘(𝑓‘(◡𝐹 “ {𝑡}))) = 𝑡)) |
187 | 186 | rspcev 3635 |
. . . . . . . . . . . 12
⊢ (((𝑓‘(◡𝐹 “ {𝑡})) ∈ ran 𝑓 ∧ (𝐹‘(𝑓‘(◡𝐹 “ {𝑡}))) = 𝑡) → ∃𝑘 ∈ ran 𝑓(𝐹‘𝑘) = 𝑡) |
188 | 174, 185,
187 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → ∃𝑘 ∈ ran 𝑓(𝐹‘𝑘) = 𝑡) |
189 | 70 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → ran 𝑓 ⊆ 𝐴) |
190 | 175, 189 | fvelimabd 6995 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → (𝑡 ∈ (𝐹 “ ran 𝑓) ↔ ∃𝑘 ∈ ran 𝑓(𝐹‘𝑘) = 𝑡)) |
191 | 188, 190 | mpbird 257 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ (𝐹 “ ran 𝑓)) |
192 | 191 | ex 412 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝑡 ∈ 𝐵 → 𝑡 ∈ (𝐹 “ ran 𝑓))) |
193 | 192 | ssrdv 4014 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → 𝐵 ⊆ (𝐹 “ ran 𝑓)) |
194 | 161, 193 | eqssd 4026 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) = 𝐵) |
195 | 138, 194 | jca 511 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → (ran 𝑓 ≈ 𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)) |
196 | | breq1 5169 |
. . . . . . . 8
⊢ (𝑥 = ran 𝑓 → (𝑥 ≈ 𝐵 ↔ ran 𝑓 ≈ 𝐵)) |
197 | | imaeq2 6085 |
. . . . . . . . 9
⊢ (𝑥 = ran 𝑓 → (𝐹 “ 𝑥) = (𝐹 “ ran 𝑓)) |
198 | 197 | eqeq1d 2742 |
. . . . . . . 8
⊢ (𝑥 = ran 𝑓 → ((𝐹 “ 𝑥) = 𝐵 ↔ (𝐹 “ ran 𝑓) = 𝐵)) |
199 | 196, 198 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = ran 𝑓 → ((𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵) ↔ (ran 𝑓 ≈ 𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵))) |
200 | 199 | rspcev 3635 |
. . . . . 6
⊢ ((ran
𝑓 ∈ 𝒫 𝐴 ∧ (ran 𝑓 ≈ 𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵)) |
201 | 71, 195, 200 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵)) |
202 | 201 | anasss 466 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) ∧ (𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵)) |
203 | 202 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ((𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵))) |
204 | 203 | exlimdv 1932 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))⟶∪ ran
(𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦 ∈ 𝐵 ↦ (◡𝐹 “ {𝑦}))(𝑓‘𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵))) |
205 | 36, 204 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵)) |