Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnpreimac Structured version   Visualization version   GIF version

Theorem fnpreimac 32329
Description: Choose a set 𝑥 containing a preimage of each element of a given set 𝐵. (Contributed by Thierry Arnoux, 7-May-2023.)
Assertion
Ref Expression
fnpreimac ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fnpreimac
Dummy variables 𝑓 𝑡 𝑢 𝑣 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . . 9 (𝑦𝐵 ↦ (𝐹 “ {𝑦})) = (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
21elrnmpt 5955 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦})))
32elv 3479 . . . . . . 7 (𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦}))
4 simpr 484 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → 𝑧 = (𝐹 “ {𝑦}))
5 simpl3 1192 . . . . . . . . . . . 12 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝐵 ⊆ ran 𝐹)
6 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝑦𝐵)
75, 6sseldd 3983 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝑦 ∈ ran 𝐹)
8 inisegn0 6097 . . . . . . . . . . 11 (𝑦 ∈ ran 𝐹 ↔ (𝐹 “ {𝑦}) ≠ ∅)
97, 8sylib 217 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ≠ ∅)
109adantr 480 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → (𝐹 “ {𝑦}) ≠ ∅)
114, 10eqnetrd 3007 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → 𝑧 ≠ ∅)
1211r19.29an 3157 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦})) → 𝑧 ≠ ∅)
133, 12sylan2b 593 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → 𝑧 ≠ ∅)
1413ralrimiva 3145 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ≠ ∅)
15 simp2 1136 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 Fn 𝐴)
16 simp1 1135 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐴𝑉)
1715, 16jca 511 . . . . . . . . . 10 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝐹 Fn 𝐴𝐴𝑉))
18 fnex 7221 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
19 rnexg 7899 . . . . . . . . . 10 (𝐹 ∈ V → ran 𝐹 ∈ V)
2017, 18, 193syl 18 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ran 𝐹 ∈ V)
21 simp3 1137 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐵 ⊆ ran 𝐹)
2220, 21ssexd 5324 . . . . . . . 8 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐵 ∈ V)
23 mptexg 7225 . . . . . . . 8 (𝐵 ∈ V → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
24 rnexg 7899 . . . . . . . 8 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
2522, 23, 243syl 18 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
26 fvi 6967 . . . . . . 7 (ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
2725, 26syl 17 . . . . . 6 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
2827raleqdv 3324 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅ ↔ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ≠ ∅))
2914, 28mpbird 257 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅)
30 fvex 6904 . . . . 5 ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∈ V
3130ac5b 10479 . . . 4 (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅ → ∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧))
3229, 31syl 17 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧))
3327unieqd 4922 . . . . . 6 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
3427, 33feq23d 6712 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ↔ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
3527raleqdv 3324 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧))
3634, 35anbi12d 630 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ((𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧) ↔ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)))
3736exbidv 1923 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)))
3832, 37mpbid 231 . 2 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧))
39 vex 3477 . . . . . . . . 9 𝑓 ∈ V
4039rnex 7907 . . . . . . . 8 ran 𝑓 ∈ V
4140a1i 11 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ∈ V)
42 simplr 766 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
43 frn 6724 . . . . . . . . 9 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
4442, 43syl 17 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
45 nfv 1916 . . . . . . . . . . . . 13 𝑦(𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹)
46 nfcv 2902 . . . . . . . . . . . . . 14 𝑦𝑓
47 nfmpt1 5256 . . . . . . . . . . . . . . 15 𝑦(𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4847nfrn 5951 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4948nfuni 4915 . . . . . . . . . . . . . 14 𝑦 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
5046, 48, 49nff 6713 . . . . . . . . . . . . 13 𝑦 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
5145, 50nfan 1901 . . . . . . . . . . . 12 𝑦((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
52 nfv 1916 . . . . . . . . . . . . 13 𝑦(𝑓𝑧) ∈ 𝑧
5348, 52nfralw 3307 . . . . . . . . . . . 12 𝑦𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧
5451, 53nfan 1901 . . . . . . . . . . 11 𝑦(((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
5517, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V)
5655ad3antrrr 727 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → 𝐹 ∈ V)
57 cnvexg 7919 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
58 imaexg 7910 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ {𝑦}) ∈ V)
5956, 57, 583syl 18 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ V)
60 cnvimass 6080 . . . . . . . . . . . . . . 15 (𝐹 “ {𝑦}) ⊆ dom 𝐹
6160a1i 11 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ⊆ dom 𝐹)
6215fndmd 6654 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → dom 𝐹 = 𝐴)
6362ad3antrrr 727 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → dom 𝐹 = 𝐴)
6461, 63sseqtrd 4022 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ⊆ 𝐴)
6559, 64elpwd 4608 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ 𝒫 𝐴)
6665ex 412 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → (𝐹 “ {𝑦}) ∈ 𝒫 𝐴))
6754, 66ralrimi 3253 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ 𝒫 𝐴)
681rnmptss 7124 . . . . . . . . . 10 (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ 𝒫 𝐴 → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴)
6967, 68syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴)
70 sspwuni 5103 . . . . . . . . 9 (ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝐴)
7169, 70sylib 217 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝐴)
7244, 71sstrd 3992 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓𝐴)
7341, 72elpwd 4608 . . . . . 6 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ∈ 𝒫 𝐴)
74 fnfun 6649 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝐴 → Fun 𝐹)
7515, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → Fun 𝐹)
7675ad5antr 731 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Fun 𝐹)
77 sndisj 5139 . . . . . . . . . . . . . . . . . . 19 Disj 𝑦𝐵 {𝑦}
78 disjpreima 32248 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹Disj 𝑦𝐵 {𝑦}) → Disj 𝑦𝐵 (𝐹 “ {𝑦}))
7976, 77, 78sylancl 585 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Disj 𝑦𝐵 (𝐹 “ {𝑦}))
80 disjrnmpt 32249 . . . . . . . . . . . . . . . . . 18 (Disj 𝑦𝐵 (𝐹 “ {𝑦}) → Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧)
8179, 80syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧)
82 simpllr 773 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
83 simplr 766 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
84 simp-4r 781 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
85 fveq2 6891 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑢 → (𝑓𝑧) = (𝑓𝑢))
86 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑢𝑧 = 𝑢)
8785, 86eleq12d 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
8887rspcv 3608 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓𝑢) ∈ 𝑢))
8988imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓𝑢) ∈ 𝑢)
9082, 84, 89syl2anc 583 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) ∈ 𝑢)
91 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) = (𝑓𝑣))
92 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑣 → (𝑓𝑧) = (𝑓𝑣))
93 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑣𝑧 = 𝑣)
9492, 93eleq12d 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑣 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑣) ∈ 𝑣))
9594rspcv 3608 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓𝑣) ∈ 𝑣))
9695imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓𝑣) ∈ 𝑣)
9783, 84, 96syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑣) ∈ 𝑣)
9891, 97eqeltrd 2832 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) ∈ 𝑣)
9986, 93disji 5131 . . . . . . . . . . . . . . . . 17 ((Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ∧ (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ((𝑓𝑢) ∈ 𝑢 ∧ (𝑓𝑢) ∈ 𝑣)) → 𝑢 = 𝑣)
10081, 82, 83, 90, 98, 99syl122anc 1378 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑢 = 𝑣)
101100ex 412 . . . . . . . . . . . . . . 15 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → ((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
102101anasss 466 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))) → ((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
103102ralrimivva 3199 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
10442, 103jca 511 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣)))
105 dff13 7257 . . . . . . . . . . . 12 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣)))
106104, 105sylibr 233 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
107 f1f1orn 6844 . . . . . . . . . . 11 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓)
108106, 107syl 17 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓)
109 f1oen3g 8968 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ ran 𝑓)
11039, 108, 109sylancr 586 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ ran 𝑓)
111110ensymd 9007 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
11222, 23syl 17 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
113112ad2antrr 723 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
11459ex 412 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → (𝐹 “ {𝑦}) ∈ V))
11554, 114ralrimi 3253 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V)
11675ad5antr 731 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → Fun 𝐹)
117 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦𝑡)
11821ad5antr 731 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝐵 ⊆ ran 𝐹)
119 simpllr 773 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦𝐵)
120118, 119sseldd 3983 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦 ∈ ran 𝐹)
121 simplr 766 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑡𝐵)
122118, 121sseldd 3983 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑡 ∈ ran 𝐹)
123116, 117, 120, 122preimane 32328 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → (𝐹 “ {𝑦}) ≠ (𝐹 “ {𝑡}))
124123ex 412 . . . . . . . . . . . . . . . . 17 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) → (𝑦𝑡 → (𝐹 “ {𝑦}) ≠ (𝐹 “ {𝑡})))
125124necon4d 2963 . . . . . . . . . . . . . . . 16 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) → ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
126125ralrimiva 3145 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → ∀𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
127126ex 412 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → ∀𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
12854, 127ralrimi 3253 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
129115, 128jca 511 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
130 sneq 4638 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → {𝑦} = {𝑡})
131130imaeq2d 6059 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑡}))
1321, 131f1mpt 7263 . . . . . . . . . . . 12 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V ↔ (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
133129, 132sylibr 233 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V)
134 f1f1orn 6844 . . . . . . . . . . 11 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
135133, 134syl 17 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
136 f1oen3g 8968 . . . . . . . . . 10 (((𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V ∧ (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → 𝐵 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
137113, 135, 136syl2anc 583 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝐵 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
138137ensymd 9007 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ 𝐵)
139 entr 9008 . . . . . . . 8 ((ran 𝑓 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ 𝐵) → ran 𝑓𝐵)
140111, 138, 139syl2anc 583 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓𝐵)
141 imass2 6101 . . . . . . . . . . 11 (ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
14243, 141syl 17 . . . . . . . . . 10 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
14342, 142syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
144 imauni 7248 . . . . . . . . . 10 (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧)
145 imaeq2 6055 . . . . . . . . . . . . 13 (𝑧 = (𝐹 “ {𝑦}) → (𝐹𝑧) = (𝐹 “ (𝐹 “ {𝑦})))
14655adantr 480 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝐹 ∈ V)
147146, 57, 583syl 18 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ V)
148145, 147iunrnmptss 32230 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})))
149 funimacnv 6629 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
15075, 149syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
151150adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
1526snssd 4812 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → {𝑦} ⊆ 𝐵)
153152, 5sstrd 3992 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → {𝑦} ⊆ ran 𝐹)
154 df-ss 3965 . . . . . . . . . . . . . . . 16 ({𝑦} ⊆ ran 𝐹 ↔ ({𝑦} ∩ ran 𝐹) = {𝑦})
155153, 154sylib 217 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → ({𝑦} ∩ ran 𝐹) = {𝑦})
156151, 155eqtrd 2771 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ (𝐹 “ {𝑦})) = {𝑦})
157156iuneq2dv 5021 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})) = 𝑦𝐵 {𝑦})
158 iunid 5063 . . . . . . . . . . . . 13 𝑦𝐵 {𝑦} = 𝐵
159157, 158eqtrdi 2787 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})) = 𝐵)
160148, 159sseqtrd 4022 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝐵)
161160ad2antrr 723 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝐵)
162144, 161eqsstrid 4030 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ⊆ 𝐵)
163143, 162sstrd 3992 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ 𝐵)
16442adantr 480 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
165164ffund 6721 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → Fun 𝑓)
166 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑡𝐵)
16755, 57syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V)
168167ad3antrrr 727 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝐹 ∈ V)
169 imaexg 7910 . . . . . . . . . . . . . . . 16 (𝐹 ∈ V → (𝐹 “ {𝑡}) ∈ V)
170168, 169syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ V)
1711, 131elrnmpt1s 5956 . . . . . . . . . . . . . . 15 ((𝑡𝐵 ∧ (𝐹 “ {𝑡}) ∈ V) → (𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
172166, 170, 171syl2anc 583 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
173164fdmd 6728 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → dom 𝑓 = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
174172, 173eleqtrrd 2835 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ dom 𝑓)
175 fvelrn 7078 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐹 “ {𝑡}) ∈ dom 𝑓) → (𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓)
176165, 174, 175syl2anc 583 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓)
17715ad3antrrr 727 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝐹 Fn 𝐴)
178 simplr 766 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
179 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹 “ {𝑡}) → (𝑓𝑧) = (𝑓‘(𝐹 “ {𝑡})))
180 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹 “ {𝑡}) → 𝑧 = (𝐹 “ {𝑡}))
181179, 180eleq12d 2826 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹 “ {𝑡}) → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})))
182181rspcv 3608 . . . . . . . . . . . . . . 15 ((𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})))
183182imp 406 . . . . . . . . . . . . . 14 (((𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}))
184172, 178, 183syl2anc 583 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}))
185 fniniseg 7061 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → ((𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}) ↔ ((𝑓‘(𝐹 “ {𝑡})) ∈ 𝐴 ∧ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)))
186185simplbda 499 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})) → (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)
187177, 184, 186syl2anc 583 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)
188 fveqeq2 6900 . . . . . . . . . . . . 13 (𝑘 = (𝑓‘(𝐹 “ {𝑡})) → ((𝐹𝑘) = 𝑡 ↔ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡))
189188rspcev 3612 . . . . . . . . . . . 12 (((𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓 ∧ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡) → ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡)
190176, 187, 189syl2anc 583 . . . . . . . . . . 11 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡)
19172adantr 480 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ran 𝑓𝐴)
192177, 191fvelimabd 6965 . . . . . . . . . . 11 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑡 ∈ (𝐹 “ ran 𝑓) ↔ ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡))
193190, 192mpbird 257 . . . . . . . . . 10 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑡 ∈ (𝐹 “ ran 𝑓))
194193ex 412 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑡𝐵𝑡 ∈ (𝐹 “ ran 𝑓)))
195194ssrdv 3988 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝐵 ⊆ (𝐹 “ ran 𝑓))
196163, 195eqssd 3999 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) = 𝐵)
197140, 196jca 511 . . . . . 6 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵))
198 breq1 5151 . . . . . . . 8 (𝑥 = ran 𝑓 → (𝑥𝐵 ↔ ran 𝑓𝐵))
199 imaeq2 6055 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝐹𝑥) = (𝐹 “ ran 𝑓))
200199eqeq1d 2733 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝐹𝑥) = 𝐵 ↔ (𝐹 “ ran 𝑓) = 𝐵))
201198, 200anbi12d 630 . . . . . . 7 (𝑥 = ran 𝑓 → ((𝑥𝐵 ∧ (𝐹𝑥) = 𝐵) ↔ (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)))
202201rspcev 3612 . . . . . 6 ((ran 𝑓 ∈ 𝒫 𝐴 ∧ (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
20373, 197, 202syl2anc 583 . . . . 5 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
204203anasss 466 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
205204ex 412 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ((𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵)))
206205exlimdv 1935 . 2 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵)))
20738, 206mpd 15 1 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  wrex 3069  Vcvv 3473  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908   ciun 4997  Disj wdisj 5113   class class class wbr 5148  cmpt 5231   I cid 5573  ccnv 5675  dom cdm 5676  ran crn 5677  cima 5679  Fun wfun 6537   Fn wfn 6538  wf 6539  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543  cen 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-ac2 10464
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-er 8709  df-en 8946  df-card 9940  df-ac 10117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator