Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnpreimac Structured version   Visualization version   GIF version

Theorem fnpreimac 30410
Description: Choose a set 𝑥 containing a preimage of each element of a given set 𝐵. (Contributed by Thierry Arnoux, 7-May-2023.)
Assertion
Ref Expression
fnpreimac ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fnpreimac
Dummy variables 𝑓 𝑡 𝑢 𝑣 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . . . 9 (𝑦𝐵 ↦ (𝐹 “ {𝑦})) = (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
21elrnmpt 5822 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦})))
32elv 3499 . . . . . . 7 (𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦}))
4 simpr 487 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → 𝑧 = (𝐹 “ {𝑦}))
5 simpl3 1189 . . . . . . . . . . . 12 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝐵 ⊆ ran 𝐹)
6 simpr 487 . . . . . . . . . . . 12 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝑦𝐵)
75, 6sseldd 3967 . . . . . . . . . . 11 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝑦 ∈ ran 𝐹)
8 inisegn0 5955 . . . . . . . . . . 11 (𝑦 ∈ ran 𝐹 ↔ (𝐹 “ {𝑦}) ≠ ∅)
97, 8sylib 220 . . . . . . . . . 10 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ≠ ∅)
109adantr 483 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → (𝐹 “ {𝑦}) ≠ ∅)
114, 10eqnetrd 3083 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) ∧ 𝑧 = (𝐹 “ {𝑦})) → 𝑧 ≠ ∅)
1211r19.29an 3288 . . . . . . 7 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ ∃𝑦𝐵 𝑧 = (𝐹 “ {𝑦})) → 𝑧 ≠ ∅)
133, 12sylan2b 595 . . . . . 6 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → 𝑧 ≠ ∅)
1413ralrimiva 3182 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ≠ ∅)
15 simp2 1133 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 Fn 𝐴)
16 simp1 1132 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐴𝑉)
1715, 16jca 514 . . . . . . . . . 10 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝐹 Fn 𝐴𝐴𝑉))
18 fnex 6974 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
19 rnexg 7608 . . . . . . . . . 10 (𝐹 ∈ V → ran 𝐹 ∈ V)
2017, 18, 193syl 18 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ran 𝐹 ∈ V)
21 simp3 1134 . . . . . . . . 9 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐵 ⊆ ran 𝐹)
2220, 21ssexd 5220 . . . . . . . 8 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐵 ∈ V)
23 mptexg 6978 . . . . . . . 8 (𝐵 ∈ V → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
24 rnexg 7608 . . . . . . . 8 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
2522, 23, 243syl 18 . . . . . . 7 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
26 fvi 6734 . . . . . . 7 (ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
2725, 26syl 17 . . . . . 6 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
2827raleqdv 3415 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅ ↔ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ≠ ∅))
2914, 28mpbird 259 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅)
30 fvex 6677 . . . . 5 ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∈ V
3130ac5b 9894 . . . 4 (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))𝑧 ≠ ∅ → ∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧))
3229, 31syl 17 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧))
3327unieqd 4841 . . . . . 6 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
3427, 33feq23d 6503 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ↔ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
3527raleqdv 3415 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧))
3634, 35anbi12d 632 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ((𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧) ↔ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)))
3736exbidv 1918 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))⟶ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ( I ‘ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))(𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)))
3832, 37mpbid 234 . 2 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧))
39 vex 3497 . . . . . . . . 9 𝑓 ∈ V
4039rnex 7611 . . . . . . . 8 ran 𝑓 ∈ V
4140a1i 11 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ∈ V)
42 simplr 767 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
43 frn 6514 . . . . . . . . 9 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
4442, 43syl 17 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
45 nfv 1911 . . . . . . . . . . . . 13 𝑦(𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹)
46 nfcv 2977 . . . . . . . . . . . . . 14 𝑦𝑓
47 nfmpt1 5156 . . . . . . . . . . . . . . 15 𝑦(𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4847nfrn 5818 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
4948nfuni 4838 . . . . . . . . . . . . . 14 𝑦 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
5046, 48, 49nff 6504 . . . . . . . . . . . . 13 𝑦 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))
5145, 50nfan 1896 . . . . . . . . . . . 12 𝑦((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
52 nfv 1911 . . . . . . . . . . . . 13 𝑦(𝑓𝑧) ∈ 𝑧
5348, 52nfralw 3225 . . . . . . . . . . . 12 𝑦𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧
5451, 53nfan 1896 . . . . . . . . . . 11 𝑦(((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
5517, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V)
5655ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → 𝐹 ∈ V)
57 cnvexg 7623 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
58 imaexg 7614 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ {𝑦}) ∈ V)
5956, 57, 583syl 18 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ V)
60 cnvimass 5943 . . . . . . . . . . . . . . 15 (𝐹 “ {𝑦}) ⊆ dom 𝐹
6160a1i 11 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ⊆ dom 𝐹)
62 fndm 6449 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6315, 62syl 17 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → dom 𝐹 = 𝐴)
6463ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → dom 𝐹 = 𝐴)
6561, 64sseqtrd 4006 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ⊆ 𝐴)
6659, 65elpwd 4549 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ 𝒫 𝐴)
6766ex 415 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → (𝐹 “ {𝑦}) ∈ 𝒫 𝐴))
6854, 67ralrimi 3216 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ 𝒫 𝐴)
691rnmptss 6880 . . . . . . . . . 10 (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ 𝒫 𝐴 → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴)
7068, 69syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴)
71 sspwuni 5014 . . . . . . . . 9 (ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝒫 𝐴 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝐴)
7270, 71sylib 220 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ⊆ 𝐴)
7344, 72sstrd 3976 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓𝐴)
7441, 73elpwd 4549 . . . . . 6 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ∈ 𝒫 𝐴)
75 fnfun 6447 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝐴 → Fun 𝐹)
7615, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → Fun 𝐹)
7776ad5antr 732 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Fun 𝐹)
78 sndisj 5049 . . . . . . . . . . . . . . . . . . 19 Disj 𝑦𝐵 {𝑦}
79 disjpreima 30328 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹Disj 𝑦𝐵 {𝑦}) → Disj 𝑦𝐵 (𝐹 “ {𝑦}))
8077, 78, 79sylancl 588 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Disj 𝑦𝐵 (𝐹 “ {𝑦}))
81 disjrnmpt 30329 . . . . . . . . . . . . . . . . . 18 (Disj 𝑦𝐵 (𝐹 “ {𝑦}) → Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧)
8280, 81syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧)
83 simpllr 774 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
84 simplr 767 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
85 simp-4r 782 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
86 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑢 → (𝑓𝑧) = (𝑓𝑢))
87 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑢𝑧 = 𝑢)
8886, 87eleq12d 2907 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
8988rspcv 3617 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓𝑢) ∈ 𝑢))
9089imp 409 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓𝑢) ∈ 𝑢)
9183, 85, 90syl2anc 586 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) ∈ 𝑢)
92 simpr 487 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) = (𝑓𝑣))
93 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑣 → (𝑓𝑧) = (𝑓𝑣))
94 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑣𝑧 = 𝑣)
9593, 94eleq12d 2907 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑣 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑣) ∈ 𝑣))
9695rspcv 3617 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓𝑣) ∈ 𝑣))
9796imp 409 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓𝑣) ∈ 𝑣)
9884, 85, 97syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑣) ∈ 𝑣)
9992, 98eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → (𝑓𝑢) ∈ 𝑣)
10087, 94disji 5041 . . . . . . . . . . . . . . . . 17 ((Disj 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))𝑧 ∧ (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ((𝑓𝑢) ∈ 𝑢 ∧ (𝑓𝑢) ∈ 𝑣)) → 𝑢 = 𝑣)
10182, 83, 84, 91, 99, 100syl122anc 1375 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ (𝑓𝑢) = (𝑓𝑣)) → 𝑢 = 𝑣)
102101ex 415 . . . . . . . . . . . . . . 15 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → ((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
103102anasss 469 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ (𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ 𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))) → ((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
104103ralrimivva 3191 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣))
10542, 104jca 514 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣)))
106 dff13 7007 . . . . . . . . . . . 12 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ↔ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑢 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))∀𝑣 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))((𝑓𝑢) = (𝑓𝑣) → 𝑢 = 𝑣)))
107105, 106sylibr 236 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
108 f1f1orn 6620 . . . . . . . . . . 11 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓)
109107, 108syl 17 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓)
110 f1oen3g 8519 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))–1-1-onto→ran 𝑓) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ ran 𝑓)
11139, 109, 110sylancr 589 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ ran 𝑓)
112111ensymd 8554 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
11322, 23syl 17 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
114113ad2antrr 724 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V)
11559ex 415 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → (𝐹 “ {𝑦}) ∈ V))
11654, 115ralrimi 3216 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V)
11776ad5antr 732 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → Fun 𝐹)
118 simpr 487 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦𝑡)
11921ad5antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝐵 ⊆ ran 𝐹)
120 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦𝐵)
121119, 120sseldd 3967 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑦 ∈ ran 𝐹)
122 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑡𝐵)
123119, 122sseldd 3967 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → 𝑡 ∈ ran 𝐹)
124117, 118, 121, 123preimane 30409 . . . . . . . . . . . . . . . . . 18 (((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) ∧ 𝑦𝑡) → (𝐹 “ {𝑦}) ≠ (𝐹 “ {𝑡}))
125124ex 415 . . . . . . . . . . . . . . . . 17 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) → (𝑦𝑡 → (𝐹 “ {𝑦}) ≠ (𝐹 “ {𝑡})))
126125necon4d 3040 . . . . . . . . . . . . . . . 16 ((((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) ∧ 𝑡𝐵) → ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
127126ralrimiva 3182 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑦𝐵) → ∀𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
128127ex 415 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 → ∀𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
12954, 128ralrimi 3216 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡))
130116, 129jca 514 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
131 sneq 4570 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → {𝑦} = {𝑡})
132131imaeq2d 5923 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑡}))
1331, 132f1mpt 7013 . . . . . . . . . . . 12 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V ↔ (∀𝑦𝐵 (𝐹 “ {𝑦}) ∈ V ∧ ∀𝑦𝐵𝑡𝐵 ((𝐹 “ {𝑦}) = (𝐹 “ {𝑡}) → 𝑦 = 𝑡)))
134130, 133sylibr 236 . . . . . . . . . . 11 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V)
135 f1f1orn 6620 . . . . . . . . . . 11 ((𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1→V → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
136134, 135syl 17 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
137 f1oen3g 8519 . . . . . . . . . 10 (((𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∈ V ∧ (𝑦𝐵 ↦ (𝐹 “ {𝑦})):𝐵1-1-onto→ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) → 𝐵 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
138114, 136, 137syl2anc 586 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝐵 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
139138ensymd 8554 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ 𝐵)
140 entr 8555 . . . . . . . 8 ((ran 𝑓 ≈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ≈ 𝐵) → ran 𝑓𝐵)
141112, 139, 140syl2anc 586 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ran 𝑓𝐵)
142 imass2 5959 . . . . . . . . . . 11 (ran 𝑓 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
14343, 142syl 17 . . . . . . . . . 10 (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
14442, 143syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))))
145 imauni 6999 . . . . . . . . . 10 (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) = 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧)
146 imaeq2 5919 . . . . . . . . . . . . 13 (𝑧 = (𝐹 “ {𝑦}) → (𝐹𝑧) = (𝐹 “ (𝐹 “ {𝑦})))
14755adantr 483 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → 𝐹 ∈ V)
148147, 57, 583syl 18 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ {𝑦}) ∈ V)
149146, 148iunrnmptss 30311 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})))
150 funimacnv 6429 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
15176, 150syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
152151adantr 483 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ (𝐹 “ {𝑦})) = ({𝑦} ∩ ran 𝐹))
1536snssd 4735 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → {𝑦} ⊆ 𝐵)
154153, 5sstrd 3976 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → {𝑦} ⊆ ran 𝐹)
155 df-ss 3951 . . . . . . . . . . . . . . . 16 ({𝑦} ⊆ ran 𝐹 ↔ ({𝑦} ∩ ran 𝐹) = {𝑦})
156154, 155sylib 220 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → ({𝑦} ∩ ran 𝐹) = {𝑦})
157152, 156eqtrd 2856 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑦𝐵) → (𝐹 “ (𝐹 “ {𝑦})) = {𝑦})
158157iuneq2dv 4935 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})) = 𝑦𝐵 {𝑦})
159 iunid 4976 . . . . . . . . . . . . 13 𝑦𝐵 {𝑦} = 𝐵
160158, 159syl6eq 2872 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑦𝐵 (𝐹 “ (𝐹 “ {𝑦})) = 𝐵)
161149, 160sseqtrd 4006 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝐵)
162161ad2antrr 724 . . . . . . . . . 10 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝐹𝑧) ⊆ 𝐵)
163145, 162eqsstrid 4014 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ⊆ 𝐵)
164144, 163sstrd 3976 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) ⊆ 𝐵)
16542adantr 483 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
166165ffund 6512 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → Fun 𝑓)
167 simpr 487 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑡𝐵)
16855, 57syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → 𝐹 ∈ V)
169168ad3antrrr 728 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝐹 ∈ V)
170 imaexg 7614 . . . . . . . . . . . . . . . 16 (𝐹 ∈ V → (𝐹 “ {𝑡}) ∈ V)
171169, 170syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ V)
1721, 132elrnmpt1s 5823 . . . . . . . . . . . . . . 15 ((𝑡𝐵 ∧ (𝐹 “ {𝑡}) ∈ V) → (𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
173167, 171, 172syl2anc 586 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
174165fdmd 6517 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → dom 𝑓 = ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})))
175173, 174eleqtrrd 2916 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹 “ {𝑡}) ∈ dom 𝑓)
176 fvelrn 6838 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐹 “ {𝑡}) ∈ dom 𝑓) → (𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓)
177166, 175, 176syl2anc 586 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓)
17815ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝐹 Fn 𝐴)
179 simplr 767 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)
180 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹 “ {𝑡}) → (𝑓𝑧) = (𝑓‘(𝐹 “ {𝑡})))
181 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹 “ {𝑡}) → 𝑧 = (𝐹 “ {𝑡}))
182180, 181eleq12d 2907 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹 “ {𝑡}) → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})))
183182rspcv 3617 . . . . . . . . . . . . . . 15 ((𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) → (∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧 → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})))
184183imp 409 . . . . . . . . . . . . . 14 (((𝐹 “ {𝑡}) ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}))
185173, 179, 184syl2anc 586 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}))
186 fniniseg 6824 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → ((𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡}) ↔ ((𝑓‘(𝐹 “ {𝑡})) ∈ 𝐴 ∧ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)))
187186simplbda 502 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ (𝑓‘(𝐹 “ {𝑡})) ∈ (𝐹 “ {𝑡})) → (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)
188178, 185, 187syl2anc 586 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡)
189 fveqeq2 6673 . . . . . . . . . . . . 13 (𝑘 = (𝑓‘(𝐹 “ {𝑡})) → ((𝐹𝑘) = 𝑡 ↔ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡))
190189rspcev 3622 . . . . . . . . . . . 12 (((𝑓‘(𝐹 “ {𝑡})) ∈ ran 𝑓 ∧ (𝐹‘(𝑓‘(𝐹 “ {𝑡}))) = 𝑡) → ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡)
191177, 188, 190syl2anc 586 . . . . . . . . . . 11 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡)
19273adantr 483 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → ran 𝑓𝐴)
193178, 192fvelimabd 6732 . . . . . . . . . . 11 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → (𝑡 ∈ (𝐹 “ ran 𝑓) ↔ ∃𝑘 ∈ ran 𝑓(𝐹𝑘) = 𝑡))
194191, 193mpbird 259 . . . . . . . . . 10 (((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) ∧ 𝑡𝐵) → 𝑡 ∈ (𝐹 “ ran 𝑓))
195194ex 415 . . . . . . . . 9 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝑡𝐵𝑡 ∈ (𝐹 “ ran 𝑓)))
196195ssrdv 3972 . . . . . . . 8 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → 𝐵 ⊆ (𝐹 “ ran 𝑓))
197164, 196eqssd 3983 . . . . . . 7 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (𝐹 “ ran 𝑓) = 𝐵)
198141, 197jca 514 . . . . . 6 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵))
199 breq1 5061 . . . . . . . 8 (𝑥 = ran 𝑓 → (𝑥𝐵 ↔ ran 𝑓𝐵))
200 imaeq2 5919 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝐹𝑥) = (𝐹 “ ran 𝑓))
201200eqeq1d 2823 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝐹𝑥) = 𝐵 ↔ (𝐹 “ ran 𝑓) = 𝐵))
202199, 201anbi12d 632 . . . . . . 7 (𝑥 = ran 𝑓 → ((𝑥𝐵 ∧ (𝐹𝑥) = 𝐵) ↔ (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)))
203202rspcev 3622 . . . . . 6 ((ran 𝑓 ∈ 𝒫 𝐴 ∧ (ran 𝑓𝐵 ∧ (𝐹 “ ran 𝑓) = 𝐵)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
20474, 198, 203syl2anc 586 . . . . 5 ((((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ 𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
205204anasss 469 . . . 4 (((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) ∧ (𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧)) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
206205ex 415 . . 3 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ((𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵)))
207206exlimdv 1930 . 2 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → (∃𝑓(𝑓:ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))⟶ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦})) ∧ ∀𝑧 ∈ ran (𝑦𝐵 ↦ (𝐹 “ {𝑦}))(𝑓𝑧) ∈ 𝑧) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵)))
20838, 207mpd 15 1 ((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   cuni 4831   ciun 4911  Disj wdisj 5023   class class class wbr 5058  cmpt 5138   I cid 5453  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  cen 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-wrecs 7941  df-recs 8002  df-er 8283  df-en 8504  df-card 9362  df-ac 9536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator