| Step | Hyp | Ref
| Expression |
| 1 | | raleq 3323 |
. . . . 5
⊢ (𝑤 = ∅ → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ ∅
(𝐵 ∈ dom vol ∧
(vol‘𝐵) ∈
ℝ))) |
| 2 | | disjeq1 5117 |
. . . . 5
⊢ (𝑤 = ∅ → (Disj
𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ ∅ 𝐵)) |
| 3 | 1, 2 | anbi12d 632 |
. . . 4
⊢ (𝑤 = ∅ →
((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈
∅ 𝐵))) |
| 4 | | iuneq1 5008 |
. . . . . 6
⊢ (𝑤 = ∅ → ∪ 𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) |
| 5 | 4 | fveq2d 6910 |
. . . . 5
⊢ (𝑤 = ∅ →
(vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ ∅ 𝐵)) |
| 6 | | sumeq1 15725 |
. . . . 5
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . 4
⊢ (𝑤 = ∅ →
((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵))) |
| 8 | 3, 7 | imbi12d 344 |
. . 3
⊢ (𝑤 = ∅ →
(((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈
∅ 𝐵) →
(vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)))) |
| 9 | | raleq 3323 |
. . . . 5
⊢ (𝑤 = 𝑦 → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
| 10 | | disjeq1 5117 |
. . . . 5
⊢ (𝑤 = 𝑦 → (Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ 𝑦 𝐵)) |
| 11 | 9, 10 | anbi12d 632 |
. . . 4
⊢ (𝑤 = 𝑦 → ((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵))) |
| 12 | | iuneq1 5008 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ∪
𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ 𝑦 𝐵) |
| 13 | 12 | fveq2d 6910 |
. . . . 5
⊢ (𝑤 = 𝑦 → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ 𝑦 𝐵)) |
| 14 | | sumeq1 15725 |
. . . . 5
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) |
| 15 | 13, 14 | eqeq12d 2753 |
. . . 4
⊢ (𝑤 = 𝑦 → ((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵))) |
| 16 | 11, 15 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝑦 → (((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)))) |
| 17 | | raleq 3323 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
| 18 | | disjeq1 5117 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
| 19 | 17, 18 | anbi12d 632 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))) |
| 20 | | iuneq1 5008 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∪
𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 21 | 20 | fveq2d 6910 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
| 22 | | sumeq1 15725 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)) |
| 23 | 21, 22 | eqeq12d 2753 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))) |
| 24 | 19, 23 | imbi12d 344 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
| 25 | | raleq 3323 |
. . . . 5
⊢ (𝑤 = 𝐴 → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
| 26 | | disjeq1 5117 |
. . . . 5
⊢ (𝑤 = 𝐴 → (Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵)) |
| 27 | 25, 26 | anbi12d 632 |
. . . 4
⊢ (𝑤 = 𝐴 → ((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵))) |
| 28 | | iuneq1 5008 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ∪
𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵) |
| 29 | 28 | fveq2d 6910 |
. . . . 5
⊢ (𝑤 = 𝐴 → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ 𝐴 𝐵)) |
| 30 | | sumeq1 15725 |
. . . . 5
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
| 31 | 29, 30 | eqeq12d 2753 |
. . . 4
⊢ (𝑤 = 𝐴 → ((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵))) |
| 32 | 27, 31 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝐴 → (((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)))) |
| 33 | | 0mbl 25574 |
. . . . . . 7
⊢ ∅
∈ dom vol |
| 34 | | mblvol 25565 |
. . . . . . 7
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . 6
⊢
(vol‘∅) = (vol*‘∅) |
| 36 | | ovol0 25528 |
. . . . . 6
⊢
(vol*‘∅) = 0 |
| 37 | 35, 36 | eqtri 2765 |
. . . . 5
⊢
(vol‘∅) = 0 |
| 38 | | 0iun 5063 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
| 39 | 38 | fveq2i 6909 |
. . . . 5
⊢
(vol‘∪ 𝑘 ∈ ∅ 𝐵) = (vol‘∅) |
| 40 | | sum0 15757 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (vol‘𝐵) =
0 |
| 41 | 37, 39, 40 | 3eqtr4i 2775 |
. . . 4
⊢
(vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵) |
| 42 | 41 | a1i 11 |
. . 3
⊢
((∀𝑘 ∈
∅ (𝐵 ∈ dom vol
∧ (vol‘𝐵) ∈
ℝ) ∧ Disj 𝑘 ∈ ∅ 𝐵) → (vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)) |
| 43 | | ssun1 4178 |
. . . . . . 7
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 44 | | ssralv 4052 |
. . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ)) |
| 46 | | disjss1 5116 |
. . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 → Disj 𝑘 ∈ 𝑦 𝐵)) |
| 47 | 43, 46 | ax-mp 5 |
. . . . . 6
⊢
(Disj 𝑘
∈ (𝑦 ∪ {𝑧})𝐵 → Disj 𝑘 ∈ 𝑦 𝐵) |
| 48 | 45, 47 | anim12i 613 |
. . . . 5
⊢
((∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵)) |
| 49 | 48 | imim1i 63 |
. . . 4
⊢
(((∀𝑘 ∈
𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵))) |
| 50 | | oveq1 7438 |
. . . . . . . 8
⊢
((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) → ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
| 51 | | iunxun 5094 |
. . . . . . . . . . . 12
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) |
| 52 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 53 | | csbeq1 3902 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 54 | 52, 53 | iunxsn 5091 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
| 55 | 54 | uneq2i 4165 |
. . . . . . . . . . . 12
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
| 56 | 51, 55 | eqtri 2765 |
. . . . . . . . . . 11
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
| 57 | 56 | fveq2i 6909 |
. . . . . . . . . 10
⊢
(vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = (vol‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) |
| 58 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚𝐵 |
| 59 | | nfcsb1v 3923 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 |
| 60 | | csbeq1a 3913 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
| 61 | 58, 59, 60 | cbviun 5036 |
. . . . . . . . . . . 12
⊢ ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 |
| 62 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑦 ∈ Fin) |
| 63 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ)) |
| 64 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ dom vol ∧
(vol‘𝐵) ∈
ℝ) → 𝐵 ∈
dom vol) |
| 65 | 64 | ralimi 3083 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol) |
| 66 | 63, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol) |
| 67 | | ssralv 4052 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol)) |
| 68 | 43, 66, 67 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol) |
| 69 | | finiunmbl 25579 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) |
| 70 | 62, 68, 69 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) |
| 71 | 61, 70 | eqeltrrid 2846 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol) |
| 72 | | ssun2 4179 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
| 73 | | vsnid 4663 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ {𝑧} |
| 74 | 72, 73 | sselii 3980 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 75 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
| 76 | 75 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol |
| 77 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘vol |
| 78 | 77, 75 | nffv 6916 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(vol‘⦋𝑧 / 𝑘⦌𝐵) |
| 79 | 78 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(vol‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ |
| 80 | 76, 79 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ) |
| 81 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 82 | 81 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol)) |
| 83 | 81 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (vol‘𝐵) = (vol‘⦋𝑧 / 𝑘⦌𝐵)) |
| 84 | 83 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((vol‘𝐵) ∈ ℝ ↔
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ)) |
| 85 | 82, 84 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
(⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ))) |
| 86 | 80, 85 | rspc 3610 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
(⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ))) |
| 87 | 74, 63, 86 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ)) |
| 88 | 87 | simpld 494 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol) |
| 89 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ¬ 𝑧 ∈ 𝑦) |
| 90 | | elin 3967 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) ↔ (𝑤 ∈ ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) |
| 91 | | eliun 4995 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ↔ ∃𝑚 ∈ 𝑦 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵) |
| 92 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 93 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑛𝐵 |
| 94 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
| 95 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
| 96 | 93, 94, 95 | cbvdisj 5120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Disj 𝑘
∈ (𝑦 ∪ {𝑧})𝐵 ↔ Disj 𝑛 ∈ (𝑦 ∪ {𝑧})⦋𝑛 / 𝑘⦌𝐵) |
| 97 | 92, 96 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → Disj 𝑛 ∈ (𝑦 ∪ {𝑧})⦋𝑛 / 𝑘⦌𝐵) |
| 98 | | simpr1 1195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 ∈ 𝑦) |
| 99 | | elun1 4182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
| 100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
| 101 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
| 102 | | simpr2 1196 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵) |
| 103 | | simpr3 1197 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵) |
| 104 | | csbeq1 3902 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
| 105 | | csbeq1 3902 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑧 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 106 | 104, 105 | disji 5128 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Disj 𝑛
∈ (𝑦 ∪ {𝑧})⦋𝑛 / 𝑘⦌𝐵 ∧ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) ∧ (𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 = 𝑧) |
| 107 | 97, 100, 101, 102, 103, 106 | syl122anc 1381 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 = 𝑧) |
| 108 | 107, 98 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑧 ∈ 𝑦) |
| 109 | 108 | 3exp2 1355 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑚 ∈ 𝑦 → (𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 → (𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵 → 𝑧 ∈ 𝑦)))) |
| 110 | 109 | rexlimdv 3153 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (∃𝑚 ∈ 𝑦 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 → (𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵 → 𝑧 ∈ 𝑦))) |
| 111 | 91, 110 | biimtrid 242 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑤 ∈ ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 → (𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵 → 𝑧 ∈ 𝑦))) |
| 112 | 111 | impd 410 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((𝑤 ∈ ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵) → 𝑧 ∈ 𝑦)) |
| 113 | 90, 112 | biimtrid 242 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑤 ∈ (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) → 𝑧 ∈ 𝑦)) |
| 114 | 89, 113 | mtod 198 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ¬ 𝑤 ∈ (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵)) |
| 115 | 114 | eq0rdv 4407 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) = ∅) |
| 116 | | mblvol 25565 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol → (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵)) |
| 117 | 71, 116 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵)) |
| 118 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑚(𝐵 ∈ dom vol ∧
(vol‘𝐵) ∈
ℝ) |
| 119 | 59 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol |
| 120 | 77, 59 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(vol‘⦋𝑚 / 𝑘⦌𝐵) |
| 121 | 120 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ |
| 122 | 119, 121 | nfan 1899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ) |
| 123 | 60 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑚 → (𝐵 ∈ dom vol ↔ ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol)) |
| 124 | 60 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑚 → (vol‘𝐵) = (vol‘⦋𝑚 / 𝑘⦌𝐵)) |
| 125 | 124 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑚 → ((vol‘𝐵) ∈ ℝ ↔
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
| 126 | 123, 125 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑚 → ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ))) |
| 127 | 118, 122,
126 | cbvralw 3306 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
| 128 | 63, 127 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
| 129 | 128 | r19.21bi 3251 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
| 130 | 129 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol) |
| 131 | | mblss 25566 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol →
⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 133 | 99, 132 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ 𝑦) → ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 134 | 133 | ralrimiva 3146 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 135 | | iunss 5045 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ↔ ∀𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 136 | 134, 135 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 137 | | mblvol 25565 |
. . . . . . . . . . . . . . . . . 18
⊢
(⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol →
(vol‘⦋𝑚
/ 𝑘⦌𝐵) =
(vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 138 | 137 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol →
((vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ↔
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 139 | 138 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 140 | 129, 139 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 141 | 99, 140 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ 𝑦) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 142 | 62, 141 | fsumrecl 15770 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 143 | 131 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 144 | 143, 139 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 145 | 144 | ralimi 3083 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 146 | 128, 145 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 147 | | ssralv 4052 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) → ∀𝑚 ∈ 𝑦 (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ))) |
| 148 | 43, 146, 147 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ 𝑦 (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 149 | | ovolfiniun 25536 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ∀𝑚 ∈ 𝑦 (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) →
(vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 150 | 62, 148, 149 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 151 | | ovollecl 25518 |
. . . . . . . . . . . . 13
⊢
((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ∧ (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 152 | 136, 142,
150, 151 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 153 | 117, 152 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 154 | 87 | simprd 495 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
| 155 | | volun 25580 |
. . . . . . . . . . 11
⊢
(((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) = ∅) ∧ ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈ ℝ)) →
(vol‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) = ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
| 156 | 71, 88, 115, 153, 154, 155 | syl32anc 1380 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) = ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
| 157 | 57, 156 | eqtrid 2789 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
| 158 | | disjsn 4711 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 159 | 89, 158 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
| 160 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 161 | | snfi 9083 |
. . . . . . . . . . . 12
⊢ {𝑧} ∈ Fin |
| 162 | | unfi 9211 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 163 | 62, 161, 162 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 164 | 129 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 165 | 164 | recnd 11289 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℂ) |
| 166 | 159, 160,
163, 165 | fsumsplit 15777 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol‘⦋𝑚 / 𝑘⦌𝐵))) |
| 167 | 154 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) |
| 168 | 53 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑧 → (vol‘⦋𝑚 / 𝑘⦌𝐵) = (vol‘⦋𝑧 / 𝑘⦌𝐵)) |
| 169 | 168 | sumsn 15782 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈ ℂ) →
Σ𝑚 ∈ {𝑧}
(vol‘⦋𝑚
/ 𝑘⦌𝐵) =
(vol‘⦋𝑧
/ 𝑘⦌𝐵)) |
| 170 | 52, 167, 169 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ {𝑧} (vol‘⦋𝑚 / 𝑘⦌𝐵) = (vol‘⦋𝑧 / 𝑘⦌𝐵)) |
| 171 | 170 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol‘⦋𝑚 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
| 172 | 166, 171 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
| 173 | 157, 172 | eqeq12d 2753 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) ↔ ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵)))) |
| 174 | 50, 173 | imbitrrid 246 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) → (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵))) |
| 175 | 61 | fveq2i 6909 |
. . . . . . . 8
⊢
(vol‘∪ 𝑘 ∈ 𝑦 𝐵) = (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) |
| 176 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑚(vol‘𝐵) |
| 177 | 124, 176,
120 | cbvsum 15731 |
. . . . . . . 8
⊢
Σ𝑘 ∈
𝑦 (vol‘𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) |
| 178 | 175, 177 | eqeq12i 2755 |
. . . . . . 7
⊢
((vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵) ↔ (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵)) |
| 179 | 58, 59, 60 | cbviun 5036 |
. . . . . . . . 9
⊢ ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 |
| 180 | 179 | fveq2i 6909 |
. . . . . . . 8
⊢
(vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) |
| 181 | 124, 176,
120 | cbvsum 15731 |
. . . . . . . 8
⊢
Σ𝑘 ∈
(𝑦 ∪ {𝑧})(vol‘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) |
| 182 | 180, 181 | eqeq12i 2755 |
. . . . . . 7
⊢
((vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵) ↔ (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵)) |
| 183 | 174, 178,
182 | 3imtr4g 296 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))) |
| 184 | 183 | ex 412 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → ((vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
| 185 | 184 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
| 186 | 49, 185 | syl5 34 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
| 187 | 8, 16, 24, 32, 42, 186 | findcard2s 9205 |
. 2
⊢ (𝐴 ∈ Fin →
((∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵))) |
| 188 | 187 | 3impib 1117 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |