Step | Hyp | Ref
| Expression |
1 | | raleq 3340 |
. . . . 5
⊢ (𝑤 = ∅ → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ ∅
(𝐵 ∈ dom vol ∧
(vol‘𝐵) ∈
ℝ))) |
2 | | disjeq1 5050 |
. . . . 5
⊢ (𝑤 = ∅ → (Disj
𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ ∅ 𝐵)) |
3 | 1, 2 | anbi12d 630 |
. . . 4
⊢ (𝑤 = ∅ →
((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈
∅ 𝐵))) |
4 | | iuneq1 4945 |
. . . . . 6
⊢ (𝑤 = ∅ → ∪ 𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) |
5 | 4 | fveq2d 6772 |
. . . . 5
⊢ (𝑤 = ∅ →
(vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ ∅ 𝐵)) |
6 | | sumeq1 15381 |
. . . . 5
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)) |
7 | 5, 6 | eqeq12d 2755 |
. . . 4
⊢ (𝑤 = ∅ →
((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵))) |
8 | 3, 7 | imbi12d 344 |
. . 3
⊢ (𝑤 = ∅ →
(((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈
∅ 𝐵) →
(vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)))) |
9 | | raleq 3340 |
. . . . 5
⊢ (𝑤 = 𝑦 → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
10 | | disjeq1 5050 |
. . . . 5
⊢ (𝑤 = 𝑦 → (Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ 𝑦 𝐵)) |
11 | 9, 10 | anbi12d 630 |
. . . 4
⊢ (𝑤 = 𝑦 → ((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵))) |
12 | | iuneq1 4945 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ∪
𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ 𝑦 𝐵) |
13 | 12 | fveq2d 6772 |
. . . . 5
⊢ (𝑤 = 𝑦 → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ 𝑦 𝐵)) |
14 | | sumeq1 15381 |
. . . . 5
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) |
15 | 13, 14 | eqeq12d 2755 |
. . . 4
⊢ (𝑤 = 𝑦 → ((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵))) |
16 | 11, 15 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝑦 → (((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)))) |
17 | | raleq 3340 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
18 | | disjeq1 5050 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
19 | 17, 18 | anbi12d 630 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))) |
20 | | iuneq1 4945 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∪
𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
21 | 20 | fveq2d 6772 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
22 | | sumeq1 15381 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)) |
23 | 21, 22 | eqeq12d 2755 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))) |
24 | 19, 23 | imbi12d 344 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
25 | | raleq 3340 |
. . . . 5
⊢ (𝑤 = 𝐴 → (∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
26 | | disjeq1 5050 |
. . . . 5
⊢ (𝑤 = 𝐴 → (Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵)) |
27 | 25, 26 | anbi12d 630 |
. . . 4
⊢ (𝑤 = 𝐴 → ((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) ↔ (∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵))) |
28 | | iuneq1 4945 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ∪
𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵) |
29 | 28 | fveq2d 6772 |
. . . . 5
⊢ (𝑤 = 𝐴 → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = (vol‘∪ 𝑘 ∈ 𝐴 𝐵)) |
30 | | sumeq1 15381 |
. . . . 5
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 (vol‘𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
31 | 29, 30 | eqeq12d 2755 |
. . . 4
⊢ (𝑤 = 𝐴 → ((vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵) ↔ (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵))) |
32 | 27, 31 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝐴 → (((∀𝑘 ∈ 𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑤 𝐵) → (vol‘∪ 𝑘 ∈ 𝑤 𝐵) = Σ𝑘 ∈ 𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)))) |
33 | | 0mbl 24684 |
. . . . . . 7
⊢ ∅
∈ dom vol |
34 | | mblvol 24675 |
. . . . . . 7
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
35 | 33, 34 | ax-mp 5 |
. . . . . 6
⊢
(vol‘∅) = (vol*‘∅) |
36 | | ovol0 24638 |
. . . . . 6
⊢
(vol*‘∅) = 0 |
37 | 35, 36 | eqtri 2767 |
. . . . 5
⊢
(vol‘∅) = 0 |
38 | | 0iun 4996 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
39 | 38 | fveq2i 6771 |
. . . . 5
⊢
(vol‘∪ 𝑘 ∈ ∅ 𝐵) = (vol‘∅) |
40 | | sum0 15414 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (vol‘𝐵) =
0 |
41 | 37, 39, 40 | 3eqtr4i 2777 |
. . . 4
⊢
(vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵) |
42 | 41 | a1i 11 |
. . 3
⊢
((∀𝑘 ∈
∅ (𝐵 ∈ dom vol
∧ (vol‘𝐵) ∈
ℝ) ∧ Disj 𝑘 ∈ ∅ 𝐵) → (vol‘∪ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)) |
43 | | ssun1 4110 |
. . . . . . 7
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
44 | | ssralv 3991 |
. . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ))) |
45 | 43, 44 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ)) |
46 | | disjss1 5049 |
. . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 → Disj 𝑘 ∈ 𝑦 𝐵)) |
47 | 43, 46 | ax-mp 5 |
. . . . . 6
⊢
(Disj 𝑘
∈ (𝑦 ∪ {𝑧})𝐵 → Disj 𝑘 ∈ 𝑦 𝐵) |
48 | 45, 47 | anim12i 612 |
. . . . 5
⊢
((∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵)) |
49 | 48 | imim1i 63 |
. . . 4
⊢
(((∀𝑘 ∈
𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵))) |
50 | | oveq1 7275 |
. . . . . . . 8
⊢
((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) → ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
51 | | iunxun 5027 |
. . . . . . . . . . . 12
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) |
52 | | vex 3434 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
53 | | csbeq1 3839 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
54 | 52, 53 | iunxsn 5024 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
55 | 54 | uneq2i 4098 |
. . . . . . . . . . . 12
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
56 | 51, 55 | eqtri 2767 |
. . . . . . . . . . 11
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
57 | 56 | fveq2i 6771 |
. . . . . . . . . 10
⊢
(vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = (vol‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) |
58 | | nfcv 2908 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚𝐵 |
59 | | nfcsb1v 3861 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 |
60 | | csbeq1a 3850 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
61 | 58, 59, 60 | cbviun 4970 |
. . . . . . . . . . . 12
⊢ ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 |
62 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑦 ∈ Fin) |
63 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈
ℝ)) |
64 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ dom vol ∧
(vol‘𝐵) ∈
ℝ) → 𝐵 ∈
dom vol) |
65 | 64 | ralimi 3088 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol) |
66 | 63, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol) |
67 | | ssralv 3991 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol)) |
68 | 43, 66, 67 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol) |
69 | | finiunmbl 24689 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) |
70 | 62, 68, 69 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) |
71 | 61, 70 | eqeltrrid 2845 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol) |
72 | | ssun2 4111 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
73 | | vsnid 4603 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ {𝑧} |
74 | 72, 73 | sselii 3922 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
75 | | nfcsb1v 3861 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
76 | 75 | nfel1 2924 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol |
77 | | nfcv 2908 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘vol |
78 | 77, 75 | nffv 6778 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(vol‘⦋𝑧 / 𝑘⦌𝐵) |
79 | 78 | nfel1 2924 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(vol‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ |
80 | 76, 79 | nfan 1905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ) |
81 | | csbeq1a 3850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
82 | 81 | eleq1d 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol)) |
83 | 81 | fveq2d 6772 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (vol‘𝐵) = (vol‘⦋𝑧 / 𝑘⦌𝐵)) |
84 | 83 | eleq1d 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((vol‘𝐵) ∈ ℝ ↔
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ)) |
85 | 82, 84 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
(⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ))) |
86 | 80, 85 | rspc 3547 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) →
(⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ))) |
87 | 74, 63, 86 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈
ℝ)) |
88 | 87 | simpld 494 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol) |
89 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ¬ 𝑧 ∈ 𝑦) |
90 | | elin 3907 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) ↔ (𝑤 ∈ ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) |
91 | | eliun 4933 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ↔ ∃𝑚 ∈ 𝑦 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵) |
92 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
93 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑛𝐵 |
94 | | nfcsb1v 3861 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
95 | | csbeq1a 3850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
96 | 93, 94, 95 | cbvdisj 5053 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Disj 𝑘
∈ (𝑦 ∪ {𝑧})𝐵 ↔ Disj 𝑛 ∈ (𝑦 ∪ {𝑧})⦋𝑛 / 𝑘⦌𝐵) |
97 | 92, 96 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → Disj 𝑛 ∈ (𝑦 ∪ {𝑧})⦋𝑛 / 𝑘⦌𝐵) |
98 | | simpr1 1192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 ∈ 𝑦) |
99 | | elun1 4114 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
101 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
102 | | simpr2 1193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵) |
103 | | simpr3 1194 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵) |
104 | | csbeq1 3839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
105 | | csbeq1 3839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑧 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
106 | 104, 105 | disji 5061 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Disj 𝑛
∈ (𝑦 ∪ {𝑧})⦋𝑛 / 𝑘⦌𝐵 ∧ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) ∧ (𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 = 𝑧) |
107 | 97, 100, 101, 102, 103, 106 | syl122anc 1377 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑚 = 𝑧) |
108 | 107, 98 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵)) → 𝑧 ∈ 𝑦) |
109 | 108 | 3exp2 1352 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑚 ∈ 𝑦 → (𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 → (𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵 → 𝑧 ∈ 𝑦)))) |
110 | 109 | rexlimdv 3213 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (∃𝑚 ∈ 𝑦 𝑤 ∈ ⦋𝑚 / 𝑘⦌𝐵 → (𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵 → 𝑧 ∈ 𝑦))) |
111 | 91, 110 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑤 ∈ ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 → (𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵 → 𝑧 ∈ 𝑦))) |
112 | 111 | impd 410 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((𝑤 ∈ ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∧ 𝑤 ∈ ⦋𝑧 / 𝑘⦌𝐵) → 𝑧 ∈ 𝑦)) |
113 | 90, 112 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑤 ∈ (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) → 𝑧 ∈ 𝑦)) |
114 | 89, 113 | mtod 197 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ¬ 𝑤 ∈ (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵)) |
115 | 114 | eq0rdv 4343 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) = ∅) |
116 | | mblvol 24675 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol → (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵)) |
117 | 71, 116 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵)) |
118 | | nfv 1920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑚(𝐵 ∈ dom vol ∧
(vol‘𝐵) ∈
ℝ) |
119 | 59 | nfel1 2924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol |
120 | 77, 59 | nffv 6778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(vol‘⦋𝑚 / 𝑘⦌𝐵) |
121 | 120 | nfel1 2924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ |
122 | 119, 121 | nfan 1905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ) |
123 | 60 | eleq1d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑚 → (𝐵 ∈ dom vol ↔ ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol)) |
124 | 60 | fveq2d 6772 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑚 → (vol‘𝐵) = (vol‘⦋𝑚 / 𝑘⦌𝐵)) |
125 | 124 | eleq1d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑚 → ((vol‘𝐵) ∈ ℝ ↔
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
126 | 123, 125 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑚 → ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ))) |
127 | 118, 122,
126 | cbvralw 3371 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔
∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
128 | 63, 127 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
129 | 128 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈
ℝ)) |
130 | 129 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol) |
131 | | mblss 24676 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol →
⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
133 | 99, 132 | sylan2 592 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ 𝑦) → ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
134 | 133 | ralrimiva 3109 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
135 | | iunss 4979 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ↔ ∀𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
136 | 134, 135 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
137 | | mblvol 24675 |
. . . . . . . . . . . . . . . . . 18
⊢
(⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol →
(vol‘⦋𝑚
/ 𝑘⦌𝐵) =
(vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
138 | 137 | eleq1d 2824 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol →
((vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ↔
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
139 | 138 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
140 | 129, 139 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
141 | 99, 140 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ 𝑦) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
142 | 62, 141 | fsumrecl 15427 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
143 | 131 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
144 | 143, 139 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢
((⦋𝑚 /
𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
145 | 144 | ralimi 3088 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧
(vol‘⦋𝑚
/ 𝑘⦌𝐵) ∈ ℝ) →
∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
146 | 128, 145 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
147 | | ssralv 3991 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) → ∀𝑚 ∈ 𝑦 (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ))) |
148 | 43, 146, 147 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ 𝑦 (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
149 | | ovolfiniun 24646 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ∀𝑚 ∈ 𝑦 (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) →
(vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
150 | 62, 148, 149 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
151 | | ovollecl 24628 |
. . . . . . . . . . . . 13
⊢
((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ∧ (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
152 | 136, 142,
150, 151 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
153 | 117, 152 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
154 | 87 | simprd 495 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
155 | | volun 24690 |
. . . . . . . . . . 11
⊢
(((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∈ dom vol ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol ∧ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∩ ⦋𝑧 / 𝑘⦌𝐵) = ∅) ∧ ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈ ℝ)) →
(vol‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) = ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
156 | 71, 88, 115, 153, 154, 155 | syl32anc 1376 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) = ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
157 | 57, 156 | eqtrid 2791 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
158 | | disjsn 4652 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
159 | 89, 158 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
160 | | eqidd 2740 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
161 | | snfi 8804 |
. . . . . . . . . . . 12
⊢ {𝑧} ∈ Fin |
162 | | unfi 8920 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
163 | 62, 161, 162 | sylancl 585 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
164 | 129 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
165 | 164 | recnd 10987 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℂ) |
166 | 159, 160,
163, 165 | fsumsplit 15434 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol‘⦋𝑚 / 𝑘⦌𝐵))) |
167 | 154 | recnd 10987 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) |
168 | 53 | fveq2d 6772 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑧 → (vol‘⦋𝑚 / 𝑘⦌𝐵) = (vol‘⦋𝑧 / 𝑘⦌𝐵)) |
169 | 168 | sumsn 15439 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧
(vol‘⦋𝑧
/ 𝑘⦌𝐵) ∈ ℂ) →
Σ𝑚 ∈ {𝑧}
(vol‘⦋𝑚
/ 𝑘⦌𝐵) =
(vol‘⦋𝑧
/ 𝑘⦌𝐵)) |
170 | 52, 167, 169 | sylancr 586 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ {𝑧} (vol‘⦋𝑚 / 𝑘⦌𝐵) = (vol‘⦋𝑧 / 𝑘⦌𝐵)) |
171 | 170 | oveq2d 7284 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol‘⦋𝑚 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
172 | 166, 171 | eqtrd 2779 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵))) |
173 | 157, 172 | eqeq12d 2755 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) ↔ ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) + (vol‘⦋𝑧 / 𝑘⦌𝐵)))) |
174 | 50, 173 | syl5ibr 245 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) → (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵))) |
175 | 61 | fveq2i 6771 |
. . . . . . . 8
⊢
(vol‘∪ 𝑘 ∈ 𝑦 𝐵) = (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) |
176 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑚(vol‘𝐵) |
177 | 176, 120,
124 | cbvsumi 15390 |
. . . . . . . 8
⊢
Σ𝑘 ∈
𝑦 (vol‘𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵) |
178 | 175, 177 | eqeq12i 2757 |
. . . . . . 7
⊢
((vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵) ↔ (vol‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ 𝑦 (vol‘⦋𝑚 / 𝑘⦌𝐵)) |
179 | 58, 59, 60 | cbviun 4970 |
. . . . . . . . 9
⊢ ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 |
180 | 179 | fveq2i 6771 |
. . . . . . . 8
⊢
(vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) |
181 | 176, 120,
124 | cbvsumi 15390 |
. . . . . . . 8
⊢
Σ𝑘 ∈
(𝑦 ∪ {𝑧})(vol‘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵) |
182 | 180, 181 | eqeq12i 2757 |
. . . . . . 7
⊢
((vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵) ↔ (vol‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘⦋𝑚 / 𝑘⦌𝐵)) |
183 | 174, 178,
182 | 3imtr4g 295 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))) |
184 | 183 | ex 412 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → ((vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
185 | 184 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
186 | 49, 185 | syl5 34 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((∀𝑘 ∈ 𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝑦 𝐵) → (vol‘∪ 𝑘 ∈ 𝑦 𝐵) = Σ𝑘 ∈ 𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))) |
187 | 8, 16, 24, 32, 42, 186 | findcard2s 8913 |
. 2
⊢ (𝐴 ∈ Fin →
((∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵))) |
188 | 187 | 3impib 1114 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧
Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |