MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volfiniun Structured version   Visualization version   GIF version

Theorem volfiniun 25297
Description: The volume of a disjoint finite union of measurable sets is the sum of the measures. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
volfiniun ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝐴 𝐵) → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem volfiniun
Dummy variables 𝑚 𝑛 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3321 . . . . 5 (𝑤 = ∅ → (∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ ∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)))
2 disjeq1 5120 . . . . 5 (𝑤 = ∅ → (Disj 𝑘𝑤 𝐵Disj 𝑘 ∈ ∅ 𝐵))
31, 2anbi12d 630 . . . 4 (𝑤 = ∅ → ((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) ↔ (∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ ∅ 𝐵)))
4 iuneq1 5013 . . . . . 6 (𝑤 = ∅ → 𝑘𝑤 𝐵 = 𝑘 ∈ ∅ 𝐵)
54fveq2d 6895 . . . . 5 (𝑤 = ∅ → (vol‘ 𝑘𝑤 𝐵) = (vol‘ 𝑘 ∈ ∅ 𝐵))
6 sumeq1 15640 . . . . 5 (𝑤 = ∅ → Σ𝑘𝑤 (vol‘𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵))
75, 6eqeq12d 2747 . . . 4 (𝑤 = ∅ → ((vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵) ↔ (vol‘ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)))
83, 7imbi12d 344 . . 3 (𝑤 = ∅ → (((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) → (vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ ∅ 𝐵) → (vol‘ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵))))
9 raleq 3321 . . . . 5 (𝑤 = 𝑦 → (∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ ∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)))
10 disjeq1 5120 . . . . 5 (𝑤 = 𝑦 → (Disj 𝑘𝑤 𝐵Disj 𝑘𝑦 𝐵))
119, 10anbi12d 630 . . . 4 (𝑤 = 𝑦 → ((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) ↔ (∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑦 𝐵)))
12 iuneq1 5013 . . . . . 6 (𝑤 = 𝑦 𝑘𝑤 𝐵 = 𝑘𝑦 𝐵)
1312fveq2d 6895 . . . . 5 (𝑤 = 𝑦 → (vol‘ 𝑘𝑤 𝐵) = (vol‘ 𝑘𝑦 𝐵))
14 sumeq1 15640 . . . . 5 (𝑤 = 𝑦 → Σ𝑘𝑤 (vol‘𝐵) = Σ𝑘𝑦 (vol‘𝐵))
1513, 14eqeq12d 2747 . . . 4 (𝑤 = 𝑦 → ((vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵) ↔ (vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵)))
1611, 15imbi12d 344 . . 3 (𝑤 = 𝑦 → (((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) → (vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵)) ↔ ((∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑦 𝐵) → (vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵))))
17 raleq 3321 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)))
18 disjeq1 5120 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (Disj 𝑘𝑤 𝐵Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1917, 18anbi12d 630 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
20 iuneq1 5013 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑘𝑤 𝐵 = 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
2120fveq2d 6895 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (vol‘ 𝑘𝑤 𝐵) = (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
22 sumeq1 15640 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 (vol‘𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))
2321, 22eqeq12d 2747 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵) ↔ (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))
2419, 23imbi12d 344 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) → (vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))))
25 raleq 3321 . . . . 5 (𝑤 = 𝐴 → (∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ ∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)))
26 disjeq1 5120 . . . . 5 (𝑤 = 𝐴 → (Disj 𝑘𝑤 𝐵Disj 𝑘𝐴 𝐵))
2725, 26anbi12d 630 . . . 4 (𝑤 = 𝐴 → ((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) ↔ (∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝐴 𝐵)))
28 iuneq1 5013 . . . . . 6 (𝑤 = 𝐴 𝑘𝑤 𝐵 = 𝑘𝐴 𝐵)
2928fveq2d 6895 . . . . 5 (𝑤 = 𝐴 → (vol‘ 𝑘𝑤 𝐵) = (vol‘ 𝑘𝐴 𝐵))
30 sumeq1 15640 . . . . 5 (𝑤 = 𝐴 → Σ𝑘𝑤 (vol‘𝐵) = Σ𝑘𝐴 (vol‘𝐵))
3129, 30eqeq12d 2747 . . . 4 (𝑤 = 𝐴 → ((vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵) ↔ (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵)))
3227, 31imbi12d 344 . . 3 (𝑤 = 𝐴 → (((∀𝑘𝑤 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑤 𝐵) → (vol‘ 𝑘𝑤 𝐵) = Σ𝑘𝑤 (vol‘𝐵)) ↔ ((∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝐴 𝐵) → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵))))
33 0mbl 25289 . . . . . . 7 ∅ ∈ dom vol
34 mblvol 25280 . . . . . . 7 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
3533, 34ax-mp 5 . . . . . 6 (vol‘∅) = (vol*‘∅)
36 ovol0 25243 . . . . . 6 (vol*‘∅) = 0
3735, 36eqtri 2759 . . . . 5 (vol‘∅) = 0
38 0iun 5066 . . . . . 6 𝑘 ∈ ∅ 𝐵 = ∅
3938fveq2i 6894 . . . . 5 (vol‘ 𝑘 ∈ ∅ 𝐵) = (vol‘∅)
40 sum0 15672 . . . . 5 Σ𝑘 ∈ ∅ (vol‘𝐵) = 0
4137, 39, 403eqtr4i 2769 . . . 4 (vol‘ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵)
4241a1i 11 . . 3 ((∀𝑘 ∈ ∅ (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ ∅ 𝐵) → (vol‘ 𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (vol‘𝐵))
43 ssun1 4172 . . . . . . 7 𝑦 ⊆ (𝑦 ∪ {𝑧})
44 ssralv 4050 . . . . . . 7 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) → ∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)))
4543, 44ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) → ∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
46 disjss1 5119 . . . . . . 7 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵Disj 𝑘𝑦 𝐵))
4743, 46ax-mp 5 . . . . . 6 (Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵Disj 𝑘𝑦 𝐵)
4845, 47anim12i 612 . . . . 5 ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑦 𝐵))
4948imim1i 63 . . . 4 (((∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑦 𝐵) → (vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵)))
50 oveq1 7419 . . . . . . . 8 ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) = Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) → ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)) = (Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)))
51 iunxun 5097 . . . . . . . . . . . 12 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 = ( 𝑚𝑦 𝑚 / 𝑘𝐵 𝑚 ∈ {𝑧}𝑚 / 𝑘𝐵)
52 vex 3477 . . . . . . . . . . . . . 14 𝑧 ∈ V
53 csbeq1 3896 . . . . . . . . . . . . . 14 (𝑚 = 𝑧𝑚 / 𝑘𝐵 = 𝑧 / 𝑘𝐵)
5452, 53iunxsn 5094 . . . . . . . . . . . . 13 𝑚 ∈ {𝑧}𝑚 / 𝑘𝐵 = 𝑧 / 𝑘𝐵
5554uneq2i 4160 . . . . . . . . . . . 12 ( 𝑚𝑦 𝑚 / 𝑘𝐵 𝑚 ∈ {𝑧}𝑚 / 𝑘𝐵) = ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)
5651, 55eqtri 2759 . . . . . . . . . . 11 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 = ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)
5756fveq2i 6894 . . . . . . . . . 10 (vol‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) = (vol‘( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵))
58 nfcv 2902 . . . . . . . . . . . . 13 𝑚𝐵
59 nfcsb1v 3918 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐵
60 csbeq1a 3907 . . . . . . . . . . . . 13 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
6158, 59, 60cbviun 5039 . . . . . . . . . . . 12 𝑘𝑦 𝐵 = 𝑚𝑦 𝑚 / 𝑘𝐵
62 simpll 764 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑦 ∈ Fin)
63 simprl 768 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
64 simpl 482 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) → 𝐵 ∈ dom vol)
6564ralimi 3082 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol)
6663, 65syl 17 . . . . . . . . . . . . . 14 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol)
67 ssralv 4050 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑦 𝐵 ∈ dom vol))
6843, 66, 67mpsyl 68 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑘𝑦 𝐵 ∈ dom vol)
69 finiunmbl 25294 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ∀𝑘𝑦 𝐵 ∈ dom vol) → 𝑘𝑦 𝐵 ∈ dom vol)
7062, 68, 69syl2anc 583 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑘𝑦 𝐵 ∈ dom vol)
7161, 70eqeltrrid 2837 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑚𝑦 𝑚 / 𝑘𝐵 ∈ dom vol)
72 ssun2 4173 . . . . . . . . . . . . . 14 {𝑧} ⊆ (𝑦 ∪ {𝑧})
73 vsnid 4665 . . . . . . . . . . . . . 14 𝑧 ∈ {𝑧}
7472, 73sselii 3979 . . . . . . . . . . . . 13 𝑧 ∈ (𝑦 ∪ {𝑧})
75 nfcsb1v 3918 . . . . . . . . . . . . . . . 16 𝑘𝑧 / 𝑘𝐵
7675nfel1 2918 . . . . . . . . . . . . . . 15 𝑘𝑧 / 𝑘𝐵 ∈ dom vol
77 nfcv 2902 . . . . . . . . . . . . . . . . 17 𝑘vol
7877, 75nffv 6901 . . . . . . . . . . . . . . . 16 𝑘(vol‘𝑧 / 𝑘𝐵)
7978nfel1 2918 . . . . . . . . . . . . . . 15 𝑘(vol‘𝑧 / 𝑘𝐵) ∈ ℝ
8076, 79nfan 1901 . . . . . . . . . . . . . 14 𝑘(𝑧 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑧 / 𝑘𝐵) ∈ ℝ)
81 csbeq1a 3907 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
8281eleq1d 2817 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol))
8381fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (vol‘𝐵) = (vol‘𝑧 / 𝑘𝐵))
8483eleq1d 2817 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((vol‘𝐵) ∈ ℝ ↔ (vol‘𝑧 / 𝑘𝐵) ∈ ℝ))
8582, 84anbi12d 630 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ (𝑧 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑧 / 𝑘𝐵) ∈ ℝ)))
8680, 85rspc 3600 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) → (𝑧 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑧 / 𝑘𝐵) ∈ ℝ)))
8774, 63, 86mpsyl 68 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑧 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑧 / 𝑘𝐵) ∈ ℝ))
8887simpld 494 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑧 / 𝑘𝐵 ∈ dom vol)
89 simplr 766 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ¬ 𝑧𝑦)
90 elin 3964 . . . . . . . . . . . . . 14 (𝑤 ∈ ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵) ↔ (𝑤 𝑚𝑦 𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵))
91 eliun 5001 . . . . . . . . . . . . . . . 16 (𝑤 𝑚𝑦 𝑚 / 𝑘𝐵 ↔ ∃𝑚𝑦 𝑤𝑚 / 𝑘𝐵)
92 simplrr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
93 nfcv 2902 . . . . . . . . . . . . . . . . . . . . . 22 𝑛𝐵
94 nfcsb1v 3918 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑛 / 𝑘𝐵
95 csbeq1a 3907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
9693, 94, 95cbvdisj 5123 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵Disj 𝑛 ∈ (𝑦 ∪ {𝑧})𝑛 / 𝑘𝐵)
9792, 96sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → Disj 𝑛 ∈ (𝑦 ∪ {𝑧})𝑛 / 𝑘𝐵)
98 simpr1 1193 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑚𝑦)
99 elun1 4176 . . . . . . . . . . . . . . . . . . . . 21 (𝑚𝑦𝑚 ∈ (𝑦 ∪ {𝑧}))
10098, 99syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑚 ∈ (𝑦 ∪ {𝑧}))
10174a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
102 simpr2 1194 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑤𝑚 / 𝑘𝐵)
103 simpr3 1195 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑤𝑧 / 𝑘𝐵)
104 csbeq1 3896 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚𝑛 / 𝑘𝐵 = 𝑚 / 𝑘𝐵)
105 csbeq1 3896 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑧𝑛 / 𝑘𝐵 = 𝑧 / 𝑘𝐵)
106104, 105disji 5131 . . . . . . . . . . . . . . . . . . . 20 ((Disj 𝑛 ∈ (𝑦 ∪ {𝑧})𝑛 / 𝑘𝐵 ∧ (𝑚 ∈ (𝑦 ∪ {𝑧}) ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) ∧ (𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑚 = 𝑧)
10797, 100, 101, 102, 103, 106syl122anc 1378 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑚 = 𝑧)
108107, 98eqeltrrd 2833 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ (𝑚𝑦𝑤𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵)) → 𝑧𝑦)
1091083exp2 1353 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑚𝑦 → (𝑤𝑚 / 𝑘𝐵 → (𝑤𝑧 / 𝑘𝐵𝑧𝑦))))
110109rexlimdv 3152 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (∃𝑚𝑦 𝑤𝑚 / 𝑘𝐵 → (𝑤𝑧 / 𝑘𝐵𝑧𝑦)))
11191, 110biimtrid 241 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑤 𝑚𝑦 𝑚 / 𝑘𝐵 → (𝑤𝑧 / 𝑘𝐵𝑧𝑦)))
112111impd 410 . . . . . . . . . . . . . 14 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((𝑤 𝑚𝑦 𝑚 / 𝑘𝐵𝑤𝑧 / 𝑘𝐵) → 𝑧𝑦))
11390, 112biimtrid 241 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑤 ∈ ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵) → 𝑧𝑦))
11489, 113mtod 197 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ¬ 𝑤 ∈ ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵))
115114eq0rdv 4404 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵) = ∅)
116 mblvol 25280 . . . . . . . . . . . . 13 ( 𝑚𝑦 𝑚 / 𝑘𝐵 ∈ dom vol → (vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) = (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵))
11771, 116syl 17 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) = (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵))
118 nfv 1916 . . . . . . . . . . . . . . . . . . . . 21 𝑚(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)
11959nfel1 2918 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑚 / 𝑘𝐵 ∈ dom vol
12077, 59nffv 6901 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(vol‘𝑚 / 𝑘𝐵)
121120nfel1 2918 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(vol‘𝑚 / 𝑘𝐵) ∈ ℝ
122119, 121nfan 1901 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ)
12360eleq1d 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑚 → (𝐵 ∈ dom vol ↔ 𝑚 / 𝑘𝐵 ∈ dom vol))
12460fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑚 → (vol‘𝐵) = (vol‘𝑚 / 𝑘𝐵))
125124eleq1d 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑚 → ((vol‘𝐵) ∈ ℝ ↔ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ))
126123, 125anbi12d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑚 → ((𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ (𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ)))
127118, 122, 126cbvralw 3302 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ))
12863, 127sylib 217 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ))
129128r19.21bi 3247 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ))
130129simpld 494 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → 𝑚 / 𝑘𝐵 ∈ dom vol)
131 mblss 25281 . . . . . . . . . . . . . . . . 17 (𝑚 / 𝑘𝐵 ∈ dom vol → 𝑚 / 𝑘𝐵 ⊆ ℝ)
132130, 131syl 17 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → 𝑚 / 𝑘𝐵 ⊆ ℝ)
13399, 132sylan2 592 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚𝑦) → 𝑚 / 𝑘𝐵 ⊆ ℝ)
134133ralrimiva 3145 . . . . . . . . . . . . . 14 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ)
135 iunss 5048 . . . . . . . . . . . . . 14 ( 𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ ↔ ∀𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ)
136134, 135sylibr 233 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → 𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ)
137 mblvol 25280 . . . . . . . . . . . . . . . . . 18 (𝑚 / 𝑘𝐵 ∈ dom vol → (vol‘𝑚 / 𝑘𝐵) = (vol*‘𝑚 / 𝑘𝐵))
138137eleq1d 2817 . . . . . . . . . . . . . . . . 17 (𝑚 / 𝑘𝐵 ∈ dom vol → ((vol‘𝑚 / 𝑘𝐵) ∈ ℝ ↔ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
139138biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ) → (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
140129, 139syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
14199, 140sylan2 592 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚𝑦) → (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
14262, 141fsumrecl 15685 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
143131adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ) → 𝑚 / 𝑘𝐵 ⊆ ℝ)
144143, 139jca 511 . . . . . . . . . . . . . . . . 17 ((𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ) → (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
145144ralimi 3082 . . . . . . . . . . . . . . . 16 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝑚 / 𝑘𝐵 ∈ dom vol ∧ (vol‘𝑚 / 𝑘𝐵) ∈ ℝ) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
146128, 145syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
147 ssralv 4050 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ) → ∀𝑚𝑦 (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)))
14843, 146, 147mpsyl 68 . . . . . . . . . . . . . 14 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ∀𝑚𝑦 (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
149 ovolfiniun 25251 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ∀𝑚𝑦 (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ≤ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵))
15062, 148, 149syl2anc 583 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ≤ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵))
151 ovollecl 25233 . . . . . . . . . . . . 13 (( 𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ ∧ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ ∧ (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ≤ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵)) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ)
152136, 142, 150, 151syl3anc 1370 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ)
153117, 152eqeltrd 2832 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ)
15487simprd 495 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘𝑧 / 𝑘𝐵) ∈ ℝ)
155 volun 25295 . . . . . . . . . . 11 ((( 𝑚𝑦 𝑚 / 𝑘𝐵 ∈ dom vol ∧ 𝑧 / 𝑘𝐵 ∈ dom vol ∧ ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵) = ∅) ∧ ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ ∧ (vol‘𝑧 / 𝑘𝐵) ∈ ℝ)) → (vol‘( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)) = ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)))
15671, 88, 115, 153, 154, 155syl32anc 1377 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)) = ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)))
15757, 156eqtrid 2783 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) = ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)))
158 disjsn 4715 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
15989, 158sylibr 233 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
160 eqidd 2732 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
161 snfi 9048 . . . . . . . . . . . 12 {𝑧} ∈ Fin
162 unfi 9176 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
16362, 161, 162sylancl 585 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin)
164129simprd 495 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol‘𝑚 / 𝑘𝐵) ∈ ℝ)
165164recnd 11247 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol‘𝑚 / 𝑘𝐵) ∈ ℂ)
166159, 160, 163, 165fsumsplit 15692 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘𝑚 / 𝑘𝐵) = (Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) + Σ𝑚 ∈ {𝑧} (vol‘𝑚 / 𝑘𝐵)))
167154recnd 11247 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (vol‘𝑧 / 𝑘𝐵) ∈ ℂ)
16853fveq2d 6895 . . . . . . . . . . . . 13 (𝑚 = 𝑧 → (vol‘𝑚 / 𝑘𝐵) = (vol‘𝑧 / 𝑘𝐵))
169168sumsn 15697 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (vol‘𝑧 / 𝑘𝐵) ∈ ℂ) → Σ𝑚 ∈ {𝑧} (vol‘𝑚 / 𝑘𝐵) = (vol‘𝑧 / 𝑘𝐵))
17052, 167, 169sylancr 586 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ {𝑧} (vol‘𝑚 / 𝑘𝐵) = (vol‘𝑧 / 𝑘𝐵))
171170oveq2d 7428 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → (Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) + Σ𝑚 ∈ {𝑧} (vol‘𝑚 / 𝑘𝐵)) = (Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)))
172166, 171eqtrd 2771 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘𝑚 / 𝑘𝐵) = (Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)))
173157, 172eqeq12d 2747 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘𝑚 / 𝑘𝐵) ↔ ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵)) = (Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) + (vol‘𝑧 / 𝑘𝐵))))
17450, 173imbitrrid 245 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) = Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵) → (vol‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘𝑚 / 𝑘𝐵)))
17561fveq2i 6894 . . . . . . . 8 (vol‘ 𝑘𝑦 𝐵) = (vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵)
176 nfcv 2902 . . . . . . . . 9 𝑚(vol‘𝐵)
177176, 120, 124cbvsumi 15648 . . . . . . . 8 Σ𝑘𝑦 (vol‘𝐵) = Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵)
178175, 177eqeq12i 2749 . . . . . . 7 ((vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵) ↔ (vol‘ 𝑚𝑦 𝑚 / 𝑘𝐵) = Σ𝑚𝑦 (vol‘𝑚 / 𝑘𝐵))
17958, 59, 60cbviun 5039 . . . . . . . . 9 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵
180179fveq2i 6894 . . . . . . . 8 (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (vol‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵)
181176, 120, 124cbvsumi 15648 . . . . . . . 8 Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘𝑚 / 𝑘𝐵)
182180, 181eqeq12i 2749 . . . . . . 7 ((vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵) ↔ (vol‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol‘𝑚 / 𝑘𝐵))
183174, 178, 1823imtr4g 296 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) → ((vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵) → (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵)))
184183ex 412 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → ((vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵) → (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))))
185184a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))))
18649, 185syl5 34 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((∀𝑘𝑦 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝑦 𝐵) → (vol‘ 𝑘𝑦 𝐵) = Σ𝑘𝑦 (vol‘𝐵)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) → (vol‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol‘𝐵))))
1878, 16, 24, 32, 42, 186findcard2s 9169 . 2 (𝐴 ∈ Fin → ((∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝐴 𝐵) → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵)))
1881873impib 1115 1 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝐴 𝐵) → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  csb 3893  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   ciun 4997  Disj wdisj 5113   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7412  Fincfn 8943  cc 11112  cr 11113  0cc0 11114   + caddc 11117  cle 11254  Σcsu 15637  vol*covol 25212  volcvol 25213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-oi 9509  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xadd 13098  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-xmet 21138  df-met 21139  df-ovol 25214  df-vol 25215
This theorem is referenced by:  uniioovol  25329  uniioombllem4  25336  itg1addlem1  25442  volfiniune  33527
  Copyright terms: Public domain W3C validator