![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjif | Structured version Visualization version GIF version |
Description: Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
Ref | Expression |
---|---|
disjif.1 | ⊢ Ⅎ𝑥𝐶 |
disjif.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
disjif | ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝑥 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 4488 | . 2 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
2 | disjif.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
3 | disjif.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) | |
4 | 2, 3 | disji2f 32599 | . . . . 5 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑥 ≠ 𝑌) → (𝐵 ∩ 𝐶) = ∅) |
5 | 4 | 3expia 1121 | . . . 4 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑥 ≠ 𝑌 → (𝐵 ∩ 𝐶) = ∅)) |
6 | 5 | necon1d 2968 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐵 ∩ 𝐶) ≠ ∅ → 𝑥 = 𝑌)) |
7 | 6 | 3impia 1117 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐵 ∩ 𝐶) ≠ ∅) → 𝑥 = 𝑌) |
8 | 1, 7 | syl3an3 1165 | 1 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → 𝑥 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rmo 3388 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-in 3983 df-nul 4353 df-disj 5134 |
This theorem is referenced by: disjabrex 32604 2ndresdju 32667 |
Copyright terms: Public domain | W3C validator |