Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjif Structured version   Visualization version   GIF version

Theorem disjif 32600
Description: Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Hypotheses
Ref Expression
disjif.1 𝑥𝐶
disjif.2 (𝑥 = 𝑌𝐵 = 𝐶)
Assertion
Ref Expression
disjif ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑍(𝑥)

Proof of Theorem disjif
StepHypRef Expression
1 inelcm 4488 . 2 ((𝑍𝐵𝑍𝐶) → (𝐵𝐶) ≠ ∅)
2 disjif.1 . . . . . 6 𝑥𝐶
3 disjif.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐶)
42, 3disji2f 32599 . . . . 5 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ 𝑥𝑌) → (𝐵𝐶) = ∅)
543expia 1121 . . . 4 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → (𝑥𝑌 → (𝐵𝐶) = ∅))
65necon1d 2968 . . 3 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → ((𝐵𝐶) ≠ ∅ → 𝑥 = 𝑌))
763impia 1117 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝐵𝐶) ≠ ∅) → 𝑥 = 𝑌)
81, 7syl3an3 1165 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wnfc 2893  wne 2946  cin 3975  c0 4352  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-in 3983  df-nul 4353  df-disj 5134
This theorem is referenced by:  disjabrex  32604  2ndresdju  32667
  Copyright terms: Public domain W3C validator