Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjif Structured version   Visualization version   GIF version

Theorem disjif 32498
Description: Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Hypotheses
Ref Expression
disjif.1 𝑥𝐶
disjif.2 (𝑥 = 𝑌𝐵 = 𝐶)
Assertion
Ref Expression
disjif ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑍(𝑥)

Proof of Theorem disjif
StepHypRef Expression
1 inelcm 4459 . 2 ((𝑍𝐵𝑍𝐶) → (𝐵𝐶) ≠ ∅)
2 disjif.1 . . . . . 6 𝑥𝐶
3 disjif.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐶)
42, 3disji2f 32497 . . . . 5 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ 𝑥𝑌) → (𝐵𝐶) = ∅)
543expia 1118 . . . 4 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → (𝑥𝑌 → (𝐵𝐶) = ∅))
65necon1d 2952 . . 3 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → ((𝐵𝐶) ≠ ∅ → 𝑥 = 𝑌))
763impia 1114 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝐵𝐶) ≠ ∅) → 𝑥 = 𝑌)
81, 7syl3an3 1162 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wnfc 2876  wne 2930  cin 3945  c0 4322  Disj wdisj 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rmo 3364  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-in 3953  df-nul 4323  df-disj 5111
This theorem is referenced by:  disjabrex  32502  2ndresdju  32566
  Copyright terms: Public domain W3C validator