| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjiunb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| disjiunb.1 | ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) |
| disjiunb.2 | ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| disjiunb | ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjiunb.1 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) | |
| 2 | disjiunb.2 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) | |
| 3 | 1, 2 | iuneq12d 4973 | . 2 ⊢ (𝑖 = 𝑗 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐷 𝐸) |
| 4 | 3 | disjor 5077 | 1 ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∀wral 3049 ∩ cin 3898 ∅c0 4284 ∪ ciun 4943 Disj wdisj 5062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rmo 3348 df-v 3440 df-dif 3902 df-in 3906 df-ss 3916 df-nul 4285 df-iun 4945 df-disj 5063 |
| This theorem is referenced by: disjiund 5086 otiunsndisj 5465 s3iunsndisj 14885 |
| Copyright terms: Public domain | W3C validator |