Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjiunb | Structured version Visualization version GIF version |
Description: Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
disjiunb.1 | ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) |
disjiunb.2 | ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
disjiunb | ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjiunb.1 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) | |
2 | disjiunb.2 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) | |
3 | 1, 2 | iuneq12d 4949 | . 2 ⊢ (𝑖 = 𝑗 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐷 𝐸) |
4 | 3 | disjor 5050 | 1 ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∀wral 3063 ∩ cin 3882 ∅c0 4253 ∪ ciun 4921 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rmo 3071 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-iun 4923 df-disj 5036 |
This theorem is referenced by: disjiund 5060 otiunsndisj 5428 s3iunsndisj 14607 |
Copyright terms: Public domain | W3C validator |