| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjiunb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| disjiunb.1 | ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) |
| disjiunb.2 | ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| disjiunb | ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjiunb.1 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) | |
| 2 | disjiunb.2 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) | |
| 3 | 1, 2 | iuneq12d 4985 | . 2 ⊢ (𝑖 = 𝑗 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐷 𝐸) |
| 4 | 3 | disjor 5089 | 1 ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∀wral 3044 ∩ cin 3913 ∅c0 4296 ∪ ciun 4955 Disj wdisj 5074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3354 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 df-iun 4957 df-disj 5075 |
| This theorem is referenced by: disjiund 5098 otiunsndisj 5480 s3iunsndisj 14934 |
| Copyright terms: Public domain | W3C validator |