Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  otiunsndisj Structured version   Visualization version   GIF version

Theorem otiunsndisj 5382
 Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otiunsndisj (𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩})
Distinct variable groups:   𝐵,𝑎,𝑐   𝑉,𝑎,𝑐   𝑊,𝑎,𝑐   𝑋,𝑎,𝑐

Proof of Theorem otiunsndisj
Dummy variables 𝑑 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4890 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ↔ ∃𝑐 ∈ (𝑊 ∖ {𝑎})𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩})
2 otthg 5348 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩ ↔ (𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒)))
3 simp1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒) → 𝑎 = 𝑑)
42, 3syl6bi 256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩ → 𝑎 = 𝑑))
54con3d 155 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
653exp 1116 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑉 → (𝐵𝑋 → (𝑐 ∈ (𝑊 ∖ {𝑎}) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))))
76impcom 411 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑋𝑎𝑉) → (𝑐 ∈ (𝑊 ∖ {𝑎}) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)))
87com3r 87 . . . . . . . . . . . . . . . . . 18 𝑎 = 𝑑 → ((𝐵𝑋𝑎𝑉) → (𝑐 ∈ (𝑊 ∖ {𝑎}) → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)))
98imp31 421 . . . . . . . . . . . . . . . . 17 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)
10 velsn 4541 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} ↔ 𝑠 = ⟨𝑎, 𝐵, 𝑐⟩)
11 eqeq1 2762 . . . . . . . . . . . . . . . . . . 19 (𝑠 = ⟨𝑎, 𝐵, 𝑐⟩ → (𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
1211notbid 321 . . . . . . . . . . . . . . . . . 18 (𝑠 = ⟨𝑎, 𝐵, 𝑐⟩ → (¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
1310, 12sylbi 220 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → (¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
149, 13syl5ibrcom 250 . . . . . . . . . . . . . . . 16 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩))
1514imp 410 . . . . . . . . . . . . . . 15 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩)
16 velsn 4541 . . . . . . . . . . . . . . 15 (𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩} ↔ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩)
1715, 16sylnibr 332 . . . . . . . . . . . . . 14 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
1817adantr 484 . . . . . . . . . . . . 13 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) ∧ 𝑒 ∈ (𝑊 ∖ {𝑑})) → ¬ 𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
1918nrexdv 3194 . . . . . . . . . . . 12 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ ∃𝑒 ∈ (𝑊 ∖ {𝑑})𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
20 eliun 4890 . . . . . . . . . . . 12 (𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩} ↔ ∃𝑒 ∈ (𝑊 ∖ {𝑑})𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
2119, 20sylnibr 332 . . . . . . . . . . 11 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
2221rexlimdva2 3211 . . . . . . . . . 10 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → (∃𝑐 ∈ (𝑊 ∖ {𝑎})𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
231, 22syl5bi 245 . . . . . . . . 9 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → (𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
2423ralrimiv 3112 . . . . . . . 8 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
25 oteq3 4777 . . . . . . . . . . . . 13 (𝑐 = 𝑒 → ⟨𝑑, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)
2625sneqd 4537 . . . . . . . . . . . 12 (𝑐 = 𝑒 → {⟨𝑑, 𝐵, 𝑐⟩} = {⟨𝑑, 𝐵, 𝑒⟩})
2726cbviunv 4932 . . . . . . . . . . 11 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} = 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}
2827eleq2i 2843 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
2928notbii 323 . . . . . . . . 9 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3029ralbii 3097 . . . . . . . 8 (∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3124, 30sylibr 237 . . . . . . 7 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
32 disj 4347 . . . . . . 7 (( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅ ↔ ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
3331, 32sylibr 237 . . . . . 6 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅)
3433expcom 417 . . . . 5 ((𝐵𝑋𝑎𝑉) → (¬ 𝑎 = 𝑑 → ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3534orrd 860 . . . 4 ((𝐵𝑋𝑎𝑉) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3635adantrr 716 . . 3 ((𝐵𝑋 ∧ (𝑎𝑉𝑑𝑉)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3736ralrimivva 3120 . 2 (𝐵𝑋 → ∀𝑎𝑉𝑑𝑉 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
38 sneq 4535 . . . 4 (𝑎 = 𝑑 → {𝑎} = {𝑑})
3938difeq2d 4030 . . 3 (𝑎 = 𝑑 → (𝑊 ∖ {𝑎}) = (𝑊 ∖ {𝑑}))
40 oteq1 4775 . . . 4 (𝑎 = 𝑑 → ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑐⟩)
4140sneqd 4537 . . 3 (𝑎 = 𝑑 → {⟨𝑎, 𝐵, 𝑐⟩} = {⟨𝑑, 𝐵, 𝑐⟩})
4239, 41disjiunb 5024 . 2 (Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ↔ ∀𝑎𝑉𝑑𝑉 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
4337, 42sylibr 237 1 (𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ∖ cdif 3857   ∩ cin 3859  ∅c0 4227  {csn 4525  ⟨cotp 4533  ∪ ciun 4886  Disj wdisj 5000 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rmo 3078  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-ot 4534  df-iun 4888  df-disj 5001 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator